
Easter Term 2010 Richard Weber

OPTIMIZATION

Contents

Schedules iii

Notation iv

Index v

1 Preliminaries 1

1.1 Linear programming . 1

1.2 Optimization under constraints . 1

1.3 Representation of constraints . 1

1.4 Convexity . 2

1.5 Extreme points and optimality . 3

1.6 *Efficiency of algorithms* . 4

2 Lagrangian Methods 5

2.1 The Lagrangian sufficiency theorem 5

2.2 Example: use of the Lagrangian sufficiency theorem 6

2.3 Strategy to solve problems with the Lagrangian sufficiency theorem . 7

2.4 Example: further use of the Lagrangian sufficiency theorem 7

3 The Lagrangian Dual 9

3.1 The Lagrangian dual problem . 9

3.2 The dual problem for LP . 10

3.3 The weak duality theorem in the case of LP 11

3.4 Sufficient conditions for optimality 12

3.5 The utility of primal-dual theory . 12

4 Solutions to Linear Programming Problems 13

4.1 Basic solutions . 13

4.2 Primal-dual relationships . 15

5 The Simplex Method 17

5.1 Preview of the simplex algorithm . 17

5.2 The simplex algorithm . 19

i

6 The Simplex Tableau 21
6.1 Choice of pivot column . 21

6.2 Initialization: the two-phase method 22

7 Algebra of Linear Programming 25

7.1 Sensitivity: shadow prices . 25
7.2 Algebra of the simplex method . 26

8 Shadow Prices and Lagrangian Necessity 29
8.1 Shadow prices . 29

8.2 Lagrangian necessity . 31

9 Two Person Zero-Sum Games 33

9.1 Games with a saddle-point . 33
9.2 Example: Two-finger Morra, a game without a saddle-point 33
9.3 Determination of an optimal strategy 34

9.4 Example: Colonel Blotto . 36

10 Maximal Flow in a Network 37

10.1 Max-flow/min-cut theory . 37
10.2 Ford-Fulkerson algorithm . 39

10.3 Minimal cost circulations . 40

11 Minimum Cost Circulation Problems 41

11.1 Sufficient conditions for a minimal cost circulation 41
11.2 Max-flow as a minimum cost circulation problem 42
11.3 The transportation problem . 43

12 Transportation and Transshipment Problems 45
12.1 The transportation algorithm . 45

12.2 *Simplex-on-a-graph* . 48
12.3 Example: optimal power generation and distribution 49

ii

Books

Bazaraa, M., Jarvis, J. and Sherali, H Linear Programming and Network Flows,
fourth edition, 2010, Wiley.

Luenberger, D. Introduction to Linear and Non-Linear Programming, second edi-
tion, 1984, Addison-Wesley.

Vanderbei, R. J. Linear programming: foundations and extensions. Kluwer
2001(61.50 hardback).

Schedules

Lagrangian methods

General formulation of constrained problems; the Lagrangian sufficiency theorem.

Interpretation of Lagrange multipliers as shadow prices. Examples. [2]

Linear programming in the nondegenerate case

Convexity of feasible region; sufficiency of extreme points. Standardization of prob-

lems, slack variables, equivalence of extreme points and basic solutions. The primal
simplex algorithm, artificial variables, the two-phase method. Practical use of the
algorithm; the tableau. Examples. The dual linear problem, duality theorem in a

standardized case, complementary slackness, dual variables and their interpretation
as shadow prices. Relationship of the primal simplex algorithm to dual problem.

Two person zero-sum games. [6]

Network problems

The Ford-Fulkerson algorithm and the max-flow min-cut theorems in the rational

case. Network flows with costs, the transportation algorithm, relationship of dual
variables with nodes. Examples. Conditions for optimality in more general networks;
the simplex-on-a-graph algorithm. [3]

Practice and applications

Efficiency of algorithms. The formulation of simple practical and combinatorial
problems as linear programming or network problems. [1]

iii

Notation

n,m numbers of decision variables and functional constraints

x decision variable in a primal problem, x ∈ R
n

λ decision variable in the dual problem, λ ∈ R
m

f(x) objective function in a primal problem
x ∈ X regional constraints, X ⊆ R

n

g(x) ≤ b, g(x) = b functional constraints, g : Rn → R
m

z slack variable, z ∈ R
m

Ax ≤ b, Ax+ z = b linear constraints

c⊤x linear objective function
L(x, λ) Lagrangian, L(x, λ) = f(x)− λ⊤(g(x)− b)

λ ∈ Y Y = {λ : minx∈X L(x, λ) > −∞}.
B,N sets of indices of basic and non-basic components of x.

A, p, q pay-off matrix and decision variables in a matrix game
xij flow on arc (i, j)
v, C(S, S̄) value of a flow, value of cut (S, S̄)

c−ij, c
+
ij minimum/maximum allowed flows on arc (i, j)

dij costs per unit flow on arc (i, j)

si, dj source and demands amounts in transportation problem
λi, µj node numbers in transportation algorithm

iv

Index

anti-symmetric matrix, 36

artificial variables, 22

basic, 14
basic feasible solution, 14

basic solution, 14

basis, 14

capacity, 37
choice of pivot column, 21

circulation, 40

circulation problem, minimal cost, 40

closed network, 40
complementary slackness, 12, 16

computational complexity, 4

concave function, 3

convex function, 3
convex set, 2

cut, 37

extreme point, 3

feasible circulation, 40
feasible set, 2

Ford-Fulkerson algorithm, 39

functional constraints, 2

integer LP, 4

Lagrange multiplier, 5

Lagrangian, 5

Lagrangian dual problem, 9

Lagrangian sufficiency theorem, 5
linear program, 1

max-flow/min-cut, 37

minimal cost circulation, 40

mixed strategy, 34

node numbers, 41

non-basic, 14

non-degenerate, 14

pay-off matrix, 33
pivoting, 20
potentials, 41

primal problem, 9
primal/dual theory, 15

regional constraints, 2
revised simplex algorithm, 27

saddle-point, 33
shadow prices, 25, 29

simplex algorithm, 4, 19
simplex tableau, 19
simplex-on-a-graph algorithm, 48

slack variable, 1
spanning tree, 45

strong duality, 9
supporting hyperplane theorem, 32

surplus variables, 22

tableau, 19

tension, 41
tight, 16
transportation algorithm, 45

transportation problem, 43
tree, 45

two person zero-sum games, 33
two-phase method, 22

value of the flow, 37
value of the game, 35

weak duality, 11

v

vi

1 Preliminaries

1.1 Linear programming

Consider the problem P.

P: maximize x1 + x2

subject to x1 + 2x2 ≤ 6

x1 − x2 ≤ 3
x1, x2 ≥ 0

This is a completely linear problem – the objective function and all constraints are
linear. In matrix/vector notation we can write a typical linear program (LP) as

P: maximize c⊤x s.t. Ax ≤ b, x ≥ 0,

1.2 Optimization under constraints

The general type of problem we study in this course takes the form

maximize f(x)
subject to g(x) = b

x ∈ X

where
x ∈ R

n (n decision variables)

f : Rn → R (objective function)
X ⊆ R

n (regional constraints)

g : Rn → R
m (m functional equations)

b ⊆ R
m

Note that minimizing f(x) is the same as maximizing −f(x). We will discuss various
examples of constrained optimization problems. We will also talk briefly about ways

our methods can be applied to real-world problems.

1.3 Representation of constraints

We may wish to impose a constraint of the form g(x) ≤ b. This can be turned into

an equality constraint by the addition of a slack variable z. We write

g(x) + z = b, z ≥ 0.

It is frequently mathematically convenient to turn all our constraints into equalities.

1

We distinguish between functional constraints of the form g(x) = b and re-
gional constraints of the form x ∈ X.

Together, these define the feasible set for x. Typically, ‘obvious’ constraints like

x ≥ 0 are catered for by defining X in an appropriate way and more complicated
constraints, that may change from instance to instance of the problem, are expressed
by functional constraints g(x) = b or g(x) ≤ b.

Sometimes the choice is made for mathematical convenience. Methods of solution

typically treat regional and functional constraints differently.

The shaded region shown below is the feasible set defined by the constraints for
problem P.

A B

C

D

E

F

x1 = 0

x2 = 0

x1 + 2x2 = 6

x1 − x2 = 3

x1

x2

The feasible set for P is a convex set.

1.4 Convexity

Definition 1.1. A set S ⊆ R
n is a convex set if x, y ∈ S =⇒ λx + (1 − λ)y ∈ S

for all x, y ∈ S and 0 ≤ λ ≤ 1.

In other words, the line segment joining x and y lies in S.

 convex not convex

x

x
y

y

S S

λ = 0

λ = 1
λ = 1

2

The following theorem is easily proved.

Theorem 1.1. The feasible set of a LP problem is convex.

2

For functions defined on convex sets we make the following further definitions.

Definition 1.2. A function f : S → R is a convex function if the set above its

graph is convex. Equivalently, if

λf(x) + (1− λ)f(y) ≥ f(λx+ (1− λ)y), for all 0 ≤ λ ≤ 1.

A function f is a concave function if −f is convex.

convex
concave

x x

f f

In a general problem of minimizing a general f over a general S there may be

local minima of f which are not global minimal. It is usually difficult to find the
global minimum when there are lots of local minima.

This is why convexity is important: if S is a convex set and f is a convex function

then any local minimum of f is also a global minimum.
A linear function (as in LP) is both concave and convex, and so all local optima

of a linear objective function are also global optima.

1.5 Extreme points and optimality

Notice that in problem P the optimum of c⊤x occurs at a ‘corner’ of the feasible set,

regardless of what is the linear objective function. In our case, c⊤ = (1, 1) and the
maximum is at corner C.

feasible set

objective function

all solutions on this edge are optimal
including the two endpoints

If the objective function is parallel to an edge, then there may be other optima on
that edge, but there is always an optimum at a corner. This motivates the following
definition.

Definition 1.3. We say that x is an extreme point of a convex set S if whenever
x = θy + (1− θ)z, for y, z ∈ S, 0 < θ < 1, then x = y = z.

3

In other words, x is not in the interior of any line segment within S.

Examples of extreme points of two convex sets

all boundary points
are extreme

corners are the only extreme points

not extreme

Theorem 1.2. If an LP has a finite optimum it has an optimum at an extreme point
of the feasible set.

For LP problems the feasible set will always have a finite number of extreme points

(vertices). The feasible set is ‘polyhedral’, though it may be bounded or unbounded.
This suggests the following algorithm for solving LPs.

Algorithm:
1. Find all the vertices of the feasible set.

2. Pick the best one.

This will work, but there may be very many vertices. In fact, for Ax ≤ b, x ≥ 0,
there can be

(

n+m
m

)

vertices. So if m = n, say, then the number of vertices is of order

(2n)n, which increases exponentially in n. This is not a good algorithm!

1.6 *Efficiency of algorithms*

There is an important distinction between those algorithms whose running times (in
the worst cases) are exponential functions of ‘problem size’, e.g., (2n)n, and those

algorithms whose running times are polynomial functions of problem size, e.g., nk.
For example, the problem of finding the smallest number in a list of n numbers is

solvable in polynomial-time n by simply scanning the numbers. There is a beautiful
theory about the computational complexity of algorithms and one of its main
messages is that problems solvable in polynomial-time are the ‘easy’ ones.

We shall be learning the simplex algorithm, due to Dantzig, 1947. In worst-
case instances it does not run in polynomial-time. In 1974, Khachian discovered a

polynomial-time algorithm for general LP problems (the ellipsoid method). It is of
mainly theoretical interest, being slow in practice. In 1984, Karmarkar discovered a

new polynomial-time algorithm (an interior point method) that competes in speed
with the simplex algorithm.

In contrast, no polynomial-time algorithm is known for general integer LP, in
which x is restricted to be integer-valued. ILP includes important problems such
as bin packing, job-shop scheduling, traveling salesman and many other essentially

equivalent problems of a combinatorial nature.

4

2 Lagrangian Methods

2.1 The Lagrangian sufficiency theorem

Suppose we are given a general optimization problem,

P: minimize f(x) s.t. g(x) = b, x ∈ X,

with x ∈ R
n, b ∈ R

m (n variables and m constraints). The Lagrangian is

L(x, λ) = f(x)− λ⊤(g(x)− b),

with λ ∈ R
m (one component for each constraint). Each component of λ is called a

Lagrange multiplier.

The following theorem is simple to prove, and extremely useful in practice.

Theorem 2.1 (Lagrangian sufficiency theorem). If x∗ and λ∗ exist such that x∗ is
feasible for P and

L(x∗, λ∗) ≤ L(x, λ∗) ∀x ∈ X,

then x∗ is optimal for P.

Proof. Define

Xb = {x : x ∈ X and g(x) = b}.
Note that Xb ⊆ X and that for any x ∈ Xb

L(x, λ) = f(x)− λ⊤(g(x)− b) = f(x).

Now L(x∗, λ∗) ≤ L(x, λ∗) for all x ∈ X, by assumption, and in particular for x ∈ Xb.
So

f(x∗) = L(x∗, λ∗) ≤ L(x, λ∗) = f(x), for all x ∈ Xb.

Thus x∗ is optimal for P.

Remarks.

1. Note the ‘If’ which starts the statement of the theorem. There is no guaran-
tee that we can find a λ∗ satisfying the conditions of the theorem for general
problems P. (However, there is a large class of problems for which λ∗ do exist.)

2. At first sight the theorem offers us a method for testing that a solution x∗ is
optimal for P without helping us to find x∗ if we don’t already know it. Certainly
we will sometimes use the theorem this way. But for some problems, there is a

way we can use the theorem to find the optimal x∗.

5

2.2 Example: use of the Lagrangian sufficiency theorem

Example 2.1.

minimize x1 − x2 − 2x3

s.t. x1 + x2 + x3 = 5

x2
1 + x2

2 = 4

x ∈ X = R
3.

Solution. Since we have two constraints we take λ ∈ R
2 and write the Lagrangian

L(x, λ) = f(x)− λ⊤(g(x)− b)

= x1 − x2 − 2x3 − λ1(x1 + x2 + x3 − 5)− λ2(x
2
1 + x2

2 − 4)

=
[

x1(1− λ1)− λ2x
2
1

]

+
[

x2(−1− λ1)− λ2x
2
2

]

+
[

− x3(2 + λ1)
]

+ 5λ1 + 4λ2.

We first try to minimize L(x, λ) for fixed λ in x ∈ R
3. Notice that we can minimize

each square bracket separately.
First notice that −x3(2+λ1) has minimum −∞ unless λ1 = −2. So we only want

to consider λ1 = −2.
Observe that the terms in x1, x2 have a finite minimum only if λ2 < 0, in which

case the minimum occurs at a stationary point where,

∂L/∂x1 = 1− λ1 − 2λ2x1 = 0 =⇒ x1 = 3/2λ2

∂L/∂x2 = −1− λ1 − 2λ2x2 = 0 =⇒ x2 = 1/2λ2.

Let Y be the set of (λ1, λ2) such that L(x, λ) has a finite minimum. So

Y = {λ : λ1 = −2, λ2 < 0},

and for λ ∈ Y the minimum of L(x, λ) occurs at x(λ) = (3/2λ2, 1/2λ2, x3)
⊤.

Now to find a feasible x(λ) we need

x2
1 + x2

2 = 4 =⇒ 9

4λ2
2

+
1

4λ2
2

= 4 =⇒ λ2 = −
√

5/8.

So x1 = −3
√

2/5, x2 = −
√

2/5 and x3 = 5− x1 − x2 = 5 + 4
√

2/5.

The conditions of the Lagrangian sufficiency theorem are satisfied by

x∗ =
(

−3
√

2/5,−
√

2/5, 5 + 4
√

2/5
)⊤

and λ∗ =
(

−2,−
√

5/8
)⊤

.

So x∗ is optimal.

6

2.3 Strategy to solve problems with the Lagrangian sufficiency theorem

Attempt to find x∗, λ∗ satisfying the conditions of the theorem as follows.

1. For each λ solve the problem

minimize L(x, λ) subject to x ∈ X.

Note that the only constraints involved in this problem are x ∈ X so this should

be an easier problem to solve than P.

2. Define the set

Y = {λ : min
x∈X

L(x, λ) > −∞}.

If we obtain −∞ for the minimum in step 1 then that λ is no good. We consider
only those λ ∈ Y for which we obtain a finite minimum.

3. For λ ∈ Y , the minimum will be obtained at some x(λ) (that depends on λ in
general). Typically, x(λ) will not be feasible for P.

4. Adjust λ ∈ Y so that x(λ) is feasible. If λ∗ ∈ Y exists such that x∗ = x(λ∗) is
feasible then x∗ is optimal for P by the theorem.

2.4 Example: further use of the Lagrangian sufficiency theorem

Example 2.2.

minimize
1

1 + x1
+

1

2 + x2
s.t. x1 + x2 = b, x1, x2 ≥ 0.

Solution. We define X = {x : x ≥ 0} and the Lagrangian

L(x, λ) =
1

1 + x1
+

1

2 + x2
− λ(x1 + x2 − b)

=

(

1

1 + x1
− λx1

)

+

(

1

2 + x2
− λx2

)

+ λb.

Note that
(

1

1 + x1
− λx1

)

and

(

1

2 + x2
− λx2

)

do not have a finite minimum in x ≥ 0 unless λ ≤ 0. So we take λ ≤ 0. Observe that
in the range x ≥ 0 a function of the form

(

1
a+x
− λx

)

will have its minimum either at

x = 0, if this function is increasing at 0, or at the stationary point of the function,
occurring where x > 0, if the function is decreasing at 0. So the minimum occurs at

x =

{

0

−a+
√

−1/λ
as

√

−1/λ
≤
≥

a

7

so defining c+ = max(0, c),

x(λ) =
(

−a+
√

−1/λ
)+

.

At first sight it appears that we don’t know which values of x1, x2 to substitute

into the constraint until we know λ, and we don’t know λ until we substitute x1, x2

into the constraint. But notice that x1(λ) + x2(λ) satisfies

x1(λ) + x2(λ) =
(

−1 +
√

−1/λ
)+

+
(

−2 +
√

−1/λ
)+

=

0 ≤ −1
−1 + 1/

√
−λ as λ ∈ [−1,−1/4]

−3 + 2/
√
−λ ∈ [−1/4, 0]

So we can see that x1(λ)+x2(λ) is an increasing and continuous function (although
it is not differentiable at λ = −1 and at λ = −1/4).

0λ

x1(λ) + x2(λ)

−1 + 1√
−λ

−3 + 2√
−λ

−1 −1

4

1

Thus (by the Intermediate Value Theorem) for any b > 0 there will be a unique

value of λ, say λ∗, for which x1(λ
∗) + x2(λ

∗) = b. This λ∗ and corresponding x∗ will
satisfy the conditions of the theorem and so x∗ is optimal.

Examples of this kind are fairly common.

8

3 The Lagrangian Dual

3.1 The Lagrangian dual problem

We have defined the set

Y = {λ : min
x∈X

L(x, λ) > −∞}.

For λ ∈ Y define
L(λ) = min

x∈X
L(x, λ).

The following theorem is almost as easy to prove as the sufficiency theorem.

Theorem 3.1 (weak duality theorem). For any feasible x ∈ Xb and any λ ∈ Y

L(λ) ≤ f(x).

Proof. For x ∈ Xb, λ ∈ Y ,

f(x) = L(x, λ) ≥ min
x∈Xb

L(x, λ) ≥ min
x∈X

L(x, λ) = L(λ).

Thus, provided the set Y is non-empty, we can pick any λ ∈ Y , and observe that

L(λ) is a lower bound for the minimum value of the objective function f(x).
We can now try and make this lower bound as great as possible, i.e., let us consider

the problem

D: maximize L(λ) subject to λ ∈ Y,

equivalently,

D: maximize
λ∈Y

{

min
x∈X

L(x, λ)

}

.

This is known as the Lagrangian dual problem. The original problem is called

the primal problem. The optimal value of the dual is ≤ the optimal value of the
primal. If they are equal (as happens in LP) we say there is strong duality.

Notice that the idea of a dual problem is quite general. For example, we can look
again at the two examples we just studied.

Example 3.1. In Example 2.1 we had Y = {λ : λ1 = −2, λ2 < 0} and that
minx∈X L(x, λ) occurred for x(λ) = (3/2λ2, 1/2λ2, x3). Thus

L(λ) = L(x(λ), λ) =
10

4λ2
− 10 + 4λ2 .

The dual problem is thus

maximize
λ2<0

{

10

4λ2
− 10 + 4λ2

}

.

9

The max is at λ2 = −
√

5/8, and the primal and dual have the same optimal value,

namely −2(
√
10 + 5).

Example 3.2. In Example 2.2, Y = {λ : λ ≤ 0}. By substituting the optimal value
of x into L(x, λ) we obtain

L(λ) =

3/2 + λb ≤ −1
1/2 + 2

√
−λ+ (b+ 1)λ as λ ∈ [−1,−1/4]

4
√
−λ+ (b+ 3)λ ∈ [−1/4, 0]

We can solve the dual problem, which is maximizeL(λ) s.t. λ ≤ 0. The solution lies
in −1 ≤ λ ≤ −1/4 if 0 ≤ b ≤ 1 and in −1/4 ≤ λ ≤ 0 if 1 ≤ b. You can confirm that

for all b the primal and dual here have the same optimal values.

3.2 The dual problem for LP

Construction of the dual problem for LP is straightforward. Consider the primal
problem P:

maximize c⊤x

subject to Ax ≤ b, x ≥ 0

equivalently Ax+ z = b, x, z ≥ 0.

Write the Lagrangian

L(x, z, λ) = c⊤x− λ⊤(Ax+ z − b) = (c⊤ − λ⊤A)x− λ⊤z + λ⊤b.

As in the general case, we can find the set Y such that λ ∈ Y implies

maxx,z≥0L(x, z, λ) is finite, and for λ ∈ Y we compute the minimum of L(λ).
Consider the linear term −λ⊤z. If any coordinate λi < 0 we can make −λizi as

large as we like, by taking zi large. So there is only a finite maximum in z ≥ 0 if

λi ≥ 0 for all i.
Similarly, considering the term (c⊤− λ⊤A)x, this can be made as large as we like

unless (c⊤ − λ⊤A)i ≤ 0 for all i. Thus

Y = {λ : λ ≥ 0, λ⊤A− c⊤ ≥ 0}.

If we pick a λ ∈ Y then maxz≥0−λ⊤z = 0 (by choosing zi = 0 if λi > 0 and any zi if
λi = 0) and also maxx≥0(c⊤− λ⊤A)x = 0 similarly. Thus for λ ∈ Y , L(λ) = λ⊤b. So
a pair of primal P, and dual D is,

P: maximize c⊤x s.t. Ax ≤ b, x ≥ 0
D: minimize λ⊤b s.t. λ⊤A ≥ c⊤, λ ≥ 0.

10

Notice that D is itself a linear program. For example,

P: maximize x1 + x2

subject to x1 + 2x2 ≤ 6

x1 − x2 ≤ 3
x1, x2 ≥ 0

D: minimize 6λ1 + 3λ2

subject to λ1 + λ2 ≥ 1

2λ1 − λ2 ≥ 1
λ1, λ2 ≥ 0

Furthermore, we might write D as

D: maximize (−b)⊤λ s.t. (−A)⊤λ ≤ (−c), λ ≥ 0.

So D is of the same form as P, but with c → −b, b → −c, and A → −A⊤. This
means that the dual of D is P, and so we have proved the following lemma.

Lemma 3.2. In linear programming, the dual of the dual is the primal.

3.3 The weak duality theorem in the case of LP

We can now apply Theorem 3.1 directly to P and D to obtain the following.

Theorem 3.3 (weak duality theorem for LP). If x is feasible for P (so Ax ≤ b,

x ≥ 0) and λ is feasible for D (so λ ≥ 0, A⊤λ ≥ c) then c⊤x ≤ λ⊤b.

Since this is an important result it is worth knowing a proof for this particular

case which does not appeal to the general Theorem 3.1. Naturally enough, the proof
is very similar.

Proof. Write

L(x, z, λ) = c⊤x− λ⊤(Ax+ z − b)

where Ax+ z = b, z ≥ 0. Now for x and λ satisfying the conditions of the theorem,

c⊤x = L(x, z, λ) = (c⊤ − λ⊤A)x− λ⊤z + λ⊤b ≤ λ⊤b.

11

3.4 Sufficient conditions for optimality

Theorem 3.3 provides a quick proof of the sufficient conditions for optimality of x∗, z∗

and λ∗ in a P and D.

Theorem 3.4 (sufficient conditions for optimality in LP). If x∗, z∗ is feasible for
P and λ∗ is feasible for D and (c⊤−λ∗⊤A)x∗ = λ∗⊤z∗ = 0 (complementary slackness)
then x∗ is optimal for P and λ∗ is optimal for D. Furthermore c⊤x∗ = λ∗⊤b.

Proof. Write L(x∗, z∗, λ∗) = c⊤x∗ − λ∗⊤(Ax∗ + z∗ − b). Now

c⊤x∗ = L(x∗, z∗, λ∗)

= (c⊤ − λ∗⊤A)x∗ − λ∗⊤z∗ + λ∗⊤b

= λ∗⊤b

But for all x feasible for P we have c⊤x ≤ λ∗⊤b (by the weak duality theorem 3.3)
and this implies that for all feasible x, c⊤x ≤ c⊤x∗. So x∗ is optimal for P. Similarly,
λ∗ is optimal for D (and the problems have the same optimums).

The conditions (c⊤ − λ∗⊤A)x∗ = 0 and λ∗⊤z∗ = 0 are called complementary

slackness conditions.

3.5 The utility of primal-dual theory

Why do we care about D instead of just getting on with the solution of P?

1. It is sometimes easier to solve D than P (and they have the same optimal values).

2. For some problems it is natural to consider both P and D together (e.g., two

person zero-sum games, see Lecture 9).

3. Theorem 3.4 says that for optimality we need three things: primal feasibility,

dual feasibility and complementary slackness.

Some algorithms start with solutions that are primal feasible and work towards

dual feasibility. Others start with dual feasibility. Yet others (in particular
network problems) alternately look at the primal and dual variables and move

towards feasibility for both at once.

12

4 Solutions to Linear Programming Problems

4.1 Basic solutions

Let us return to the LP problem P in Lecture 1 and look for a more algebraic (less

geometric) characterisation of the extreme points. Let us rewrite P with equality
constraints, using slack variables.

P: maximize x1 + x2

subject to x1 + 2x2 + z1 = 6
x1 − x2 + z2 = 3

x1, x2, z1, z2 ≥ 0

Let us calculate the value of the variables at each of the 6 points marked A–F in
our picture of the feasible set for P. The values are:

x1 x2 z1 z2 f
A 0 0 6 3 0

B 3 0 3 0 3
C 4 1 0 0 5

D 0 3 0 6 3
E 6 0 0 −3 6

F 0 −3 12 0 −3

At each point there are two zero and two non-zero variables. This is not surprising.

Geometrically : The 4 lines defining the feasible set can be written x1 = 0; x2 = 0;

z1 = 0; z2 = 0. At the intersection of each pair of lines, two variables are zero.

Algebraically : Constraints Ax+ z = b are 2 equations in 4 unknowns. If we choose

2 variables (which can be done in
(

4
2

)

= 6 ways) and set them equal to zero we
will be left with two equations in the other two variables. So (provided A and
b are ‘nice’) there will be a unique solution for the two non-zero variables.

Instead of calling the slack variables z1 and z2, let us call them x3 and x4 so that

we can write P as
P: maximize x1 + x2

subject to Ax = b
x ≥ 0

Note we have to extend A to

(

1 2 1 0
1 −1 0 1

)

and x to

x1

x2

x3

x4

.

A is (m × n) with n > m and there are m equations in n > m unknowns. We can

13

choose n−m variables in
(

n
m

)

ways. Set them to zero. There is a unique solution to
Ax = b for the remaining m variables (provided A and b are ‘nice’).

Definition 4.1.

• A basic solution to Ax = b is a solution with at least n−m zero variables.

• A basic solution is non-degenerate if exactly n−m variables are zero.

• The choice of the m non-zero variables is called the basis. Variables in the basis
are called basic; the others are called non-basic.

• If a basic solution satisfies x ≥ 0 then it is called a basic feasible solution.

So A–F are basic solutions (and non-degenerate) and A–D are basic feasible solu-
tions. Henceforth, we make an assumption.

Assumption 4.1. The m× n matrix A has the property that

• The rank of A is m.

• Every set of m columns of A is linearly independent.

• If x is a b.f.s. of P, then x has exactly m non-zero entries. (non-degeneracy)

Theorem 4.1. Basic feasible solutions ≡ extreme points of the feasible set.

Proof. Suppose x is a b.f.s. Then x has exactly m non-zero entries. Suppose x =
θy + (1 − θ)z for y, z ∈ Xb and 0 < θ < 1. Then if the ith entry of x is non-basic

then xi = 0 and hence yi = zi = 0, since yi, zi ≥ 0. This means both y and z have
at least n−m zero entries. The equation Ay = b = Az implies A(y − z) = 0. Since

at most m entries of y − z are non-zero, and any set of m columns of A are linearly
independent, we have y = z, and x is an extreme point as claimed.

Now suppose x is feasible but not basic. Then x has r(> m) non-zero entries, say
xi1, . . . , xir > 0. Let ai denote the ith column of A. Since the columms ai1, . . . , air
are linearly dependent, there exists non-zero numbers yi1, . . . , yir such that yi1ai1 +

· · · + yirair = 0. Set yi = 0 if i 6= i1, . . . , ir. Now Ay = 0, so A(x± ǫy) = 0. We can
choose ǫ > 0 small enough so that both x + ǫy and x − ǫy are feasible. Hence, we

have succeeded in expressing x as a convex combination of two distinct points of Xb

since x = 1
2(x+ ǫy) + 1

2(x− ǫy). That is, x is not extreme.

Theorem 4.2. If an LP has a finite solution then there is an optimal basic feasible
solution.

Proof. Suppose x is an optimal solution, but is not basic. Then there exists y s.t.
xi = 0 =⇒ yi = 0 and Ay = 0. Consider x(ǫ) = x + ǫy. Clearly there exist some

ǫ chosen positive or negative so that c⊤x(ǫ) ≥ c⊤x, and such that x(ǫ) ≥ 0, and
Ax(ǫ) = Ax ≤ b, but x(ǫ) has fewer nonzero entries than x.

14

Taking Theorems 4.1 and 4.2 together, we have proved Theorem 1.2. So we can
do algebra instead of drawing a picture (which is good for computer and good for us

if there are many variables and constraints.) Our previous (and foolish) algorithm
can be restated:

Algorithm:

1. Find all the basic solutions.

2. Test to see which are feasible.
3. Choose the best basic feasible solution.

Unfortunately it is not usually easy to know which basic solutions will turn out to
be feasible before calculating them. Hence, even though there are often considerably

fewer basic feasible solutions we will still need to calculate all
(

n
m

)

basic solutions.

4.2 Primal-dual relationships

Now let us look at problem D which can be written, after introducing slack variables

v1 and v2 as

D: minimize 6λ1 + 3λ2

subject to λ1 + λ2 − v1 = 1

2λ1 − λ2 − v2 = 1
λ1, λ2, v1, v2 ≥ 0

A

B
C

D
E

F

λ2

λ1

λ1 = 0

λ2 = 0

v1 = 0

v2 = 0

The value of the variables, etc., at the points A–F in P (as above) and D are:

P:

x1 x2 z1 z2 f

A 0 0 6 3 0

B 3 0 3 0 3

C 4 1 0 0 5

D 0 3 0 6 3

E 6 0 0 −3 6

F 0 −3 12 0 −3

D:

v1 v2 λ1 λ2 f

A −1 −1 0 0 0

B 0 −2 0 1 3

C 0 0 2
3

1
3 5

D −1
2 0 1

2 0 3

E 0 1 1 0 6

F −2 0 0 −1 −3

Observe, that for D, as for P above, there are two zero and two non-zero variables
at each intersection (basic solution). C and E are feasible for D. The optimum is at

C with optimum value 5 (assuming we are minimizing and the other basic solutions
are not feasible.)

15

We make the following observations by comparing lists of basic solutions for P
and D.

1. For each solution for P there is a corresponding basic solution for D. [Labels
A–F have been chosen so that corresponding solutions have the same labels.]
Each pair

(a) has the same value of the objective function.

(b) satisfies complementary slackness, i.e., xivi = 0, λizi = 0,

so for each corresponding pair,

P D

variables x constraints

xi basic (xi 6= 0) ⇐⇒ constraint: tight (vi = 0)
xi non-basic (xi = 0) ⇐⇒ constraint: slack (vi 6= 0)

constraints variables λ

constraint: tight (zi = 0) ⇐⇒ λi basic (λi 6= 0)
constraint: slack (zi 6= 0) ⇐⇒ λi non-basic (λi = 0)

(These conditions determine which basic solutions in P and D are paired; the

implications go both ways because in this example all basic solutions are non-
degenerate.)

2. There is only one pair that is feasible for both P and D, and that solution is C,
which is optimal, with value 5, for both.

3. For any x feasible for P and λ feasible for D we have c⊤x ≤ b⊤λ with equality

if and only if x, λ are optima for P and D.

This correspondence between P and D is so symmetrical and pretty that it feels as
though it ought to be obvious why it works. Indeed we have already proved the

following:

Lemma 3.2 In linear programming, the dual of the dual is the primal.

Theorem 3.3 (weak duality in LP). If x is feasible for P and λ is feasible for D

then c⊤x ≤ b⊤λ. (In particular, if one problem is feasible then the other is bounded.)

Theorem 3.4 (sufficient conditions for optimality in LP). If x is feasible for P
and λ is feasible for D, and x, λ satisfy complementary slackness, then x is optimal

for P and λ is optimal for D. Furthermore c⊤x = λ⊤b.

The following will be proved in Lecture 7.

Theorem 4.3 (strong duality in LP). If both P and D are feasible (each has at

least one feasible solution), then there exists x, λ satisfying the conditions of Theorem
3.4 above.

16

5 The Simplex Method

5.1 Preview of the simplex algorithm

Let us look very closely at problem P and see if we can construct an algorithm that

behaves as follows.

Simplex algorithm

1. Start with a basic feasible solution.
2. Test — is it optimal?

3. If YES — stop.
4. If NO, move to ‘adjacent’ and better b.f.s. Return to 2.

We need to pick a b.f.s. to start. Let us take vertex A.

x1 = x2 = 0; z1 = 6, z2 = 3.

[Even for very large problems it is easy to pick a b.f.s. provided the original constraints

are m constraints in n variables, Ax ≤ b with b ≥ 0. Once we add slack variables
Ax+ z = b we have n+m variables and m constraints. If we pick x = 0, z = b this

is a b.f.s. More about picking the initial b.f. solutions in other cases later.]

Now we can write problem P as:

xi, zi ≥ 0

x1 +2x2 +z1 = 6 (1)
x1 − x2 +z2 = 3 (2)

max x1 + x2 = f (0)

The peculiar arrangement on the page is deliberate. Now it is obvious that A is not

optimal because,

1. At A, x1 = x2 = 0; z1 = 6, z2 = 3.

2. From the form of the objective function we see that increasing either x1 or x2

will improve the solution.

3. From (1) we see that it is possible to increase x1 to 6 and decrease z1 to 0
without violating this equation or making any variable infeasible.

4. From (2) we see that it is possible to increase x1 to 3 and decrease z2 to 0 before
any variable becomes infeasible.

5. Taking (1) and (2) together, then, we can increase x1 to 3, decrease z1 to 3 and

decrease z2 to 0, preserving equality in the two constraints, preserving feasibility
and increasing the objective function.

17

That is, we should move to the b.f.s.

x1 = 3, x2 = 0, z1 = 3, z2 = 0, (f = 3),

which is vertex B. Note that one variable (x1) has entered the basis and one (z2) has

left; i.e., we have moved to an ‘adjacent’ vertex. Why was this easy to see?

1. The objective function f was written in terms of the non-basic variables (x1 =
x2 = 0), so it was easy to see that increasing one of them would improve the

solution.

2. Each basic variable (z1, z2) appeared just once in one constraint, so we could con-
sider the effect of increasing x1 on each basic variable separately when deciding

how much we could increase x1.

This suggests we try and write the problem so that the conditions above hold at
B, our new b.f.s.. We can do this by adding multiples of the second equation to the
others (which is obviously allowed as we are only interested in variables satisfying

the constraints.)

So P can be written,

xi, zi ≥ 0

(1)− (2) 3x2 +z1 −z2 = 3 (1)′

(2) x1 − x2 +z2 = 3 (2)′

(0)− (2) 2x2 −z2 = f − 3 (0)′

This form of P (equivalent to the original) is what we wanted.

1. The objective function is written in terms of the non-basic variables x2, z2.

2. Basic variables x1, z1 each appear just once in one constraint.

The next step is now easy. Remember we are at B:

x1 = 3, x2 = 0, z1 = 3, z2 = 0, (f = 3).

1. From the objective function it is obvious that increasing x2 is good, whereas

increasing z2 would be bad.

2. Equation (1)′ shows that we can increase x2 to 1 and decrease z1 to 0.

3. Equation (2)′ doesn’t impose any restriction on how much we can increase x2

(we just would need to increase x1 also.)

4. Thus we can increase x2 to 1, while decreasing z1 to 0 and increasing x1 to 4.

18

So we move to vertex C:

x1 = 4, x2 = 1, z1 = 0, z2 = 0, (f = 5).

Now, rewriting the problem again into the desired form for vertex C we obtain

xi, zi ≥ 0

1
3(1)

′ x2 +1
3z1 −1

3z2 = 1

(2)′ + 1
3
(1)′ x1 +1

3
z1 +2

3
z2 = 4

(0)′ − 2
3(1)

′ −2
3z1 −1

3z2 = f − 5

Now it is clear that we have reached the optimum since

1. We know x1 = 4, x2 = 1, z1 = 0, z2 = 0 is feasible.

2. We know that for any feasible x, z we have f = 5 − 2
3z1 − 1

3z2 ≤ 5. So clearly
our solution (with z1 = z2 = 0) is the best possible.

5.2 The simplex algorithm

The procedure just described for problem P can be formalised. Rather than writing

out all the equations each time we write just the coefficients in a table known as the
simplex tableau. To repeat what we have just done, we would write:–

x1 x2 z1 z2 ai0
z1 basic 1 2 1 0 6
z2 basic 1 −1 0 1 3

a0j 1 1 0 0 0

If we label the coefficients in the body of the table (aij), the right hand sides of the

equations (ai0), the coefficients in the expression for the objective function as (a0j)
and the value of the objective function −a00, so the tableau contains

(aij) ai0

a0j a00

The algorithm is

1. Choose a variable to enter the basis. Pick a j such that a0j > 0. (The

variable corresponding to column j will enter the basis.) If all a0j ≤ 0, j ≥ 1,
then the current solution is optimal.

We picked j = 1, so x1 is entering the basis.

19

2. Find the variable to leave the basis. Choose i to minimize ai0/aij from
the set {i : aij > 0}. If aij ≤ 0 for all i then the problem is unbounded (see

examples sheet) and the objective function can be increased without limit. If
there is more than one i minimizing ai0/aij the problem has a degenerate basic

feasible solution (see example sheet.) For small problems you will be OK if you
just choose any one of them and carry on regardless.

We choose i = 2 since 3/1 < 6/1, so the variable corresponding to equation 2

leaves the basis.

3. Pivot on the element aij. (i.e., get the equations into the appropriate form
for the new basic solution.)

(a) multiply row i by 1/aij.

(b) add −(akj/aij)×(row i) to each row k 6= i, including the objective function
row.

We obtain as before

x1 x2 z1 z2 ai0
z1 basic 0 3 1 −1 3
x1 basic 1 −1 0 1 3

a0j 0 2 0 −1 −3

which is the appropriate form for the tableau for vertex B.

Check that repeating these instructions on the new tableau, by pivoting on a12,

produces the appropriate tableau for vertex C.

x1 x2 z1 z2 ai0

x2 basic 0 1 1
3 −1

3 1

x1 basic 1 0 1
3

2
3 4

a0j 0 0 −2
3
−1

3
−5

Note that the columns of the tableau corresponding to the basic variables always

make up the columns of an identity matrix.

Since the bottom row is now all ≤ 0 the algorithm stops. Don’t hesitate to look
back at Subsection 5.1 to see why we take these steps.

20

6 The Simplex Tableau

6.1 Choice of pivot column

We might have chosen the first pivot as a12 which would have resulted in

x1 x2 z1 z2 ai0
z1 basic 1 2 1 0 6
z2 basic 1 −1 0 1 3

a0j 1 1 0 0 0

−→

x1 x2 z1 z2 ai0

x2 basic
1
2 1 1

2 0 3

z2 basic
3
2

0 1
2

1 6

a0j
1
2 0 −1

2 0 −3
This is the tableau for vertex D. A further iteration, with pivot a21 takes us to the

optimal solution at vertex C. Therefore both choices of initial pivot column resulted
in it requiring two steps to reach the optimum.

Remarks.

1. In general, there is no way to tell in advance which choice of pivot column will
result in the smallest number of iterations. We may choose any column where

a0j > 0. A common rule-of-thumb is to choose the column for which a0j is
greatest, since the objective function increases by the greatest amount per unit

increase in the variable corresponding to that column.

2. At each stage of the simplex algorithm we have two things in mind.

First — a particular choice of basis and basic solution.
Second — a rewriting of the problem in a convenient form.

There is always an identity matrix embedded in the tableau corresponding to

the basic variables. Hence, when the non-basic variables are set to zero the
equations are trivial to solve for the values of the basic variables. They are just

given by the right-hand column.

Check that provided we start with the equations written in this form in the

initial tableau, the simplex algorithm rules ensure that we obtain an identity
matrix at each stage.

3. The tableau obviously contains some redundant information. For example, pro-

vided we keep track of which equation corresponds to a basic variable, we could
omit the columns corresponding to the identity matrix (and zeros in the objec-
tive row). This is good for computer programs, but it is probably better to keep

the whole thing for hand calculation.

21

6.2 Initialization: the two-phase method

In our example there was an obvious basic feasible solution with which to start the

simplex algorithm. This is not always the case. For example, suppose we have a
problem like

maximize −6x1 − 3x2

subject to x1 + x2 ≥ 1

2x1 − x2 ≥ 1
3x2 ≤ 2

x1, x2 ≥ 0

which we wish to solve using the simplex algorithm. We can add slack variables

(sometimes called surplus variables when they appear in ≥ constraints) to obtain

maximize −6x1 − 3x2

subject to x1 + x2 − z1 = 1

2x1 − x2 − z2 = 1
3x2 + z3 = 2

xi, zi ≥ 0

but there is no obvious b.f.s. since z1 = −1, z2 = −1, z3 = 2 is not feasible.

The trick is to add extra variables called artificial variables, y1, y2 so that the

constraints are

x1 + x2 − z1 + y1 = 1

2x1 − x2 − z2 + y2 = 1
3x2 + z3 = 2

xi, zi, yi ≥ 0

Phase I is to minimize y1 + y2 and we can start this phase with y1 = 1, y2 = 1

and z3 = 2. (Notice we did not need an artificial variable in the third equation.)
Provided the original problem is feasible we should be able to obtain a minimum
of 0 with y1 = y2 = 0 (since y1 and y2 are not needed to satisfy the constraints if

the original problem is feasible). The point of this is that at the end of Phase I the
simplex algorithm will have found a b.f.s. for the original problem. Phase II is then

to proceed with the solution of the original problem, starting from this b.f.s.

Note: the original objective function doesn’t enter into Phase I, but it is useful to

carry it along as an extra row in the tableau since the algorithm will then arrange
for it to be in the appropriate form to start Phase II.

Note also: the Phase I objective must be written in terms of the non-basic variables

22

to begin Phase I. This can also be accomplished in the tableau. We start with

x1 x2 z1 z2 z3 y1 y2
y1 1 1 −1 0 0 1 0 1

y2 2 −1 0 −1 0 0 1 1
z3 0 3 0 0 1 0 0 2

Phase II −6 −3 0 0 0 0 0 0
Phase I 0 0 0 0 0 −1 −1 0

Preliminary step. Add rows 1 and 2 to the Phase I objective so that it is written
in terms of non-basic variables.

x1 x2 z1 z2 z3 y1 y2
y1 1 1 −1 0 0 1 0 1

y2 2 −1 0 −1 0 0 1 1
z3 0 3 0 0 1 0 0 2

Phase II −6 −3 0 0 0 0 0 0
Phase I 3 0 −1 −1 0 0 0 2

Begin Phase I.

Pivot on
a21 to get

x1 x2 z1 z2 z3 y1 y2

y1 0 3
2 −1 1

2 0 1 −1
2

1
2

x1 1 −1
2

0 −1
2

0 0 1
2

1
2

z3 0 3 0 0 1 0 0 2

0 −6 0 −3 0 0 3 3

0 3
2 −1 1

2 0 0 −3
2

1
2

Pivot on
a14 to get

x1 x2 z1 z2 z3 y1 y2

z2 0 3 −2 1 0 2 −1 1

x1 1 1 −1 0 0 1 0 1

z3 0 3 0 0 1 0 0 2

0 3 −6 0 0 6 0 6

0 0 0 0 0 −1 −1 0

End of Phase I. y1 = y2 = 0 and we no longer need these variables (so we drop the
last two columns and Phase I objective row.) But we do have a b.f.s. to start Phase

II with (x1 = 1, z2 = 1, z3 = 2) and the rest of the tableau is already in appropriate
form. So we rewrite the last tableau without the y1, y2 columns.

23

Begin Phase II.

x1 x2 z1 z2 z3

z2 0 3 −2 1 0 1

x1 1 1 −1 0 0 1

z3 0 3 0 0 1 2

0 3 −6 0 0 6

In one more step we reach the optimum, by pivoting on a12.

x1 x2 z1 z2 z3

x2 0 1 −2
3

1
3 0 1

3

x1 1 0 −1
3 −1

3 0 2
3

z3 0 0 2 −1 1 1

0 0 −4 −1 0 5

Notice that in fact, the problem we have considered is the same as the problem D,

except that x replaces λ and we have added a constraint 2x2 ≤ 3 (which is not tight
at the optimum). It is interesting to compare the final tableau with the final tableau

for problem P (shown again below).
In general, artificial variables are needed when there are constraints like

≤ −1, or ≥ 1, or = 1,

unless constraints happen to be of a special form where it is easy to spot a b.f.s.

If the Phase I objective does not reach zero then the original problem is infeasible.

24

7 Algebra of Linear Programming

7.1 Sensitivity: shadow prices

Each row of each tableau merely consists of sums of multiples of rows of the original
tableau. The objective row = original objective row + scalar multiples of other rows.

Consider the initial and final tableau for problem P.

initial

1 2 1 0 6

1 −1 0 1 3

1 1 0 0 0

final

0 1 1
3 −1

3 1

1 0 1
3

2
3 4

0 0 −2
3
−1

3
−5

In particular, look at the columns 3 and 4, corresponding to variables z1 and z2. We

can see that

Final row (1) = 1
3 initial row (1) −1

3 initial row (2)

Final row (2) = 1
3 initial row (1) +2

3 initial row (2)

Final objective row = initial objective row −2
3
initial row (1) −1

3
initial row (2).

In particular, suppose we want to make a small change in b, so we replace
(

6
3

)

by
(

6 + ǫ1
3 + ǫ2

)

. Providing ǫ1, ǫ2 are small enough they will not affect the sequence

of simplex operations. Thus if the constraints move just a little the optimum will

still occur with the same variables in the basis. The argument above indicates that
the final tableau will be

0 1 1
3 −1

3 1 + 1
3ǫ1 − 1

3ǫ2

1 0 1
3

2
3 4 + 1

3ǫ1 +
2
3ǫ2

0 0 −2
3
−1

3
−5− 2

3
ǫ1 − 1

3
ǫ2

with corresponding solution x1 = 4+ 1
3
ǫ1− 1

3
ǫ2 and x2 = 1+ 1

3
ǫ1+

2
3
ǫ2 and objective

function value 5 + 2
3ǫ1 +

1
3ǫ2. If ǫ1, ǫ2 are such that we have x1 < 0 or x2 < 0 then

vertex C is no longer optimal.

The objective function row of the final tableau shows the sensitivity of the opti-
mal solution to changes in b and how the optimum value varies with small changes in

b. For this reason the values in the objective row are sometimes known as shadow
prices.

Notice also that being able to see how the final tableau is related to the initial

one without looking at the intermediate steps provides a useful way of checking your
arithmetic if you suspect you have got something wrong!

25

Notice that for problem P the objective rows at the vertices A, B, C and D are:

A 1 1 0 0 0
B 0 2 0 −1 −3
C 0 0 −2

3 −1
3 −5

D 1
2 0 −1

2 0 −3
Compare these values with the basic solutions of the dual problem (on page 15). You
will see that the objective row of the simplex tableau corresponding to each b.f.s.

of problem P is given by the dual variables for the corresponding basic solution to
problem D (after a sign change).

Shadow prices and dual variables are the same thing.

Thus the simplex algorithm can (and should) be viewed as searching amongst
primal basic feasible solutions looking for dual feasibility.

7.2 Algebra of the simplex method

It is convenient to divide the variables into two sets, and to split the matrix A
accordingly. For example, given

(

a11 a12 a13
a21 a22 a23

)

x1

x2

x3

 =

(

b1
b2

)

we can partition the variables into two disjoint subsets (basic and non-basic) B =
{1, 2} and N = {3} and rewrite the equation

(

a11 a12
a21 a22

)(

x1

x2

)

+

(

a13
a23

)

x3 =

(

b1
b2

)

or

ABxB + ANxN = b,

where xB =

(

x1

x2

)

contains the variables in B and xN =
(

x3

)

contains the vari-

ables in N , and AB has the columns of A corresponding to variables in B (columns
1 and 2) and AN has columns corresponding to variables from N (column 3).

You should convince yourself that the two forms of the linear equations are equiv-

alent and that the same trick would work for general m×n matrices A and partition
of variables into two sets. If A = (a1, . . . , an), where ai is the ith column, then

Ax =
∑

i∈B
aixi +

∑

i∈N
aixi = ABxB + ANxN = b.

We usually choose B to have m elements (a basis) and N to have n −m elements.

Then setting xN = 0, we solve ABxB = b where AB is an m×m matrix to find the
basic solution xB = A−1B b, xN = 0.

26

Let us take problem P in the form

P: max c⊤x s.t. Ax = b, x ≥ 0.

Given a choice of basis B we can rewrite the problem as above

max {c⊤BxB + c⊤NxN} s.t. ABxB + ANxN = b, xB, xN ≥ 0.

At this stage we are just rewriting the equations in terms of the two sets of variables
xB and xN . The equations hold for any feasible x. Now AB is invertible by our

non-degeneracy assumptions in Assumption 4.1. Thus we can write

xB = A−1B b−A−1B ANxN , (1)

and

f = c⊤BxB + c⊤NxN

= c⊤B(A
−1
B b−A−1B ANxN) + c⊤NxN

= c⊤BA
−1
B b+ (c⊤N − c⊤BA

−1
B AN)xN (2)

Equation (1) gives the constraints in a form where xB appears with an identity matrix

and (2) gives the objective function in terms of the non-basic variables. Thus the
tableau corresponding to basis B will contain (after appropriate rearrangement of
rows and columns)

basic non-basic

I A−1B AN A−1B b

0 c⊤N − c⊤BA
−1
B AN −c⊤BA−1B b

Thus, given a basis (choice of variables) we can work out the appropriate tableau
by inverting AB. Note that for many choices of B we will find that A−1B b has negative

components and so the basic solution xB = A−1B b is not feasible; we need the simplex
algorithm to tell which Bs to look at.

In programming a computer to implement the simplex algorithm you need only

remember what your current basis is, since the whole tableau can then be computed
from A−1B . The revised simplex algorithm works this way and employs various

tricks to compute the inverse of the new AB from the old A−1B (using the fact that
only one variable enters and one leaves). This can be very much more efficient.

27

Now we know that the simplex algorithm terminates at an optimal feasible basis
when the coefficients of the objective row are all ≤ 0. In other words, there is a basis

B for which
c⊤N − c⊤BA

−1
B AN ≤ 0.

Recall the dual problem is

D: minλ⊤b s.t. A⊤λ ≥ c.

Let us write λ = (A−1B)⊤cB. Then we have A⊤Bλ = cB and A⊤Nλ ≥ cN , and hence λ is
feasible. Furthermore, xB = A−1B b, xN = 0 is a basic solution for P and complemen-

tary slackness is satisfied since

cB −A⊤Bλ = 0 =⇒ (cB − A⊤Bλ)
⊤xB = 0,

xN = 0 =⇒ (cN −A⊤Nλ)
⊤xN = 0.

Consequently, xB = A−1B b, xN = 0 and λ = (A−1)⊤cB are respectively optimal for
the primal and dual. We also have that with these solutions

f = c⊤BxB = c⊤BA
−1
B b = λ⊤b.

So we have a proof of Theorem 4.3, that the primal and dual have the same objective

value (if we accept that the simplex algorithm terminates at an optimum with ≤ 0
objective row) for the case of LP problems.

Remark
We have shown that in general the objective row of the final (optimal) tableau will
contain in the non-basic columns c⊤N − λ⊤AN , where λ are dual variables. This is

consistent with our observation that the final tableau contains −λ when we start
with a primal Ax ≤ b and add slack variables z. In this case the ci corresponding to

the slack variables are zero and columns of AN corresponding to original variables
are the columns of an identity matrix. So the part of the objective row beneath the

original slack variables will contain 0⊤ − λ⊤IN = −λ⊤, and λ are the dual variables
corresponding to the primal constraints. The rest of the objective row, beneath the

original x, contains c⊤B − λ⊤AB, i.e., the values of the slack variables in the dual
problem. This is what we observed in our earlier example.

28

8 Shadow Prices and Lagrangian Necessity

8.1 Shadow prices

Lagrangian multipliers, dual variables and shadow prices are the same things. Let

us say a bit more about the latter.

Suppose you require an amounts b1, . . . , bm of m different vitamins. There are n
foodstuffs available. Let

aij = amounts of vitamin i in one unit of foodstuff j,

and suppose foodstuff j costs cj per unit. Your problem is therefore to choose the
amount xj of foodstuff j you buy to solve the LP

min
∑

j

cjxj

subject to
∑

j

aijxj ≥ bi, each i

and xj ≥ 0 each j.

Now suppose that a vitamin company decides to market m different vitamin pills

(one for each vitamin) and sell them at price pi per unit for vitamin i. Assuming
you are prepared to switch entirely to a diet of vitamin pills, but that you are not

prepared to pay more for an artificial carrot (vitamin equivalent) than a real one,
the company has to maximize profit by choosing prices pi to

max
∑

i

bipi

subject to
∑

i

aijpi ≤ cj, each j

and pi ≥ 0 each i.

Note that this is the LP which is dual to your problem. The dual variable pi is the
price you are prepared to pay for a unit of vitamin i and is called a shadow price.

By extension, dual variables are sometimes called shadow prices in problems where
their interpretation as prices is very hard (or impossible) to see.

The dual variables tell us how the optimum value of our problem changes with
changes in the right-hand side (b) of our functional constraints. This makes sense in

the example given above. If you require an amount bi + ǫ of vitamin i instead of an
amount bi you would expect the total cost of your foodstuff to change by an amount

ǫpi, where pi is the value to you of a unit of vitamin i, even though in your problem
you cannot buy vitamin i separately from the others.

29

The above makes clear the relationship between dual variables/Langrange mulit-
pliers and shadow prices in the case of linear programming.

More generally, in linear problems we can use what we know about the optimal
solutions to see how this works. Let us assume the primal problem

P (b) : min c⊤x

s.t. Ax− z = b, x, z ≥ 0.

has the optimal solution φ(b), depending on b. Consider two close together values of

b, say b′ and b′′, and suppose that optimal solutions have the same basic variables (so
optimums occur with the same variables non-zero though the values of the variables

will change slightly). The optimum still occurs at the same vertex of the feasible
region though it moves slightly. Now consider the dual problem. This is

maxλ⊤b

s.t. A⊤λ ≤ c, λ ≥ 0.

In the dual problem the feasible set does not depend on b, so the optimum of the dual

will occur with the same basic variables and the same values of the dual variables λ.
But the value of the optimum dual objective function is λ⊤b′ in one case and λ⊤b′′ in
the other and we have seen that the primal and dual have the same solutions. Hence

φ(b′) = λ⊤b′ and φ(b′′) = λ⊤b′′

and the values of the dual variables λ give the rate of change of the objective value

with b. The change is linear in this case.

The same idea works in nonlinear problems.

Example 8.1. Recall Example 2.1, where we had constraints

x1 + x2 + x3 = 5

x2
1 + x2

2 = 4

and obtained values of Lagrange multipliers of λ∗1 = −2, λ∗2 = −
√

5/8.
If we replace the constraints by

x1 + x2 + x3 = b1

x2
1 + x2

2 = b2

and write φ(b) = optimal value of the problem with b = (b1, b2)
⊤ then you can check

that
∂φ

∂b1

∣

∣

∣

∣

b=(5,4)

= −2 ∂φ

∂b2

∣

∣

∣

∣

b=(5,4)

= −
√

5/8.

30

Let P (b) be the problem: maximizef(x) : g(x) ≤ b, x ∈ R
n. Let φ(b) be its

optimal value.

Theorem 8.1. Suppose f and g are continuously differentiable on X = R
n, and that

for each b there exist unique

• x∗(b) optimal for P (b), and

• λ∗(b) ∈ R
m, λ∗(b) ≥ 0 such that φ(b) = supx∈X{f(x) + λ∗(b)⊤(b− g(x))}.

If x∗ and λ∗ are continuously differentiable, then

∂φ(b)

∂bi
= λ∗i (b). (3)

Proof.
φ(b) = L(x∗, λ∗) = f(x∗) + λ∗(b)⊤(b− g(x∗))

Since L(x∗, λ∗) is stationary with respect to x∗j , we have for each j,

∂L(x∗, λ∗)

∂x∗j
= 0 .

For each k we have either gk(x
∗) = bk, or gk(x

∗) < bk. Since λ∗(b)⊤(b − g(x∗)) = 0
we have in the later case, λ∗k = 0, and so ∂λ∗k/∂bi = 0. So

∂φ(b)

∂bi
=

∂L(x∗, λ∗)

∂bi
+

n
∑

j=1

∂L(x∗, λ∗)

∂x∗j

∂x∗j
∂bi

.

On the r.h.s. above, the second term is 0 and the first term is

∂L(x∗, λ∗)

∂bi
= λ∗i (b) +

m
∑

k=1

+
∂λ∗k(b)

∂bi

[

bk − gk(x
∗(b))

]

.

Now the second term on the r.h.s. above is 0, and so we have (3).

8.2 Lagrangian necessity

In the examples we have studied we have been able to find Lagrange multipliers λ
that work in the Lagrangian Sufficiency Theorem. We have also observed that the

primal and dual problems have the same optimum values. It is outside the scope of
the course to establish conditions under which we expect these results to hold, but

we can give a brief summary.
Let P (b) be the problem: minimizef(x) s.t. g(x) = b and x ∈ X. Let φ(b) be its

optimal value. Suppose that φ(b) is convex in b, as shown in the figure. The convexity
of φ implies that for each b∗ there is a tangent hyperplane to φ(b) at b∗ with the graph

31

minL L = f(x)− λ⊤(g(x)− b∗)

f

g

b∗

φ(b)

φ(b∗)

feasible (g(x), f(x))

y(x) = φ(b∗) + λ⊤(g − b∗)

λ⊤(g(x)− b∗)

of φ(b) lying entirely above it. This uses the supporting hyperplane theorem for
convex sets, which is geometrically obvious, but some work to prove. In the (g, f)

plane, the equation of this tanget hyperplane, through the point (b∗, φ(b∗)) can be
written y(x) = φ(b∗) + λ⊤(g(x) − b∗) for some λ. So f(x) − y(x) is minimized to

0 (over all x ∈ X) by taking x such that (g(x), f(x)) = (b∗, φ(b∗)). Equivalently,
L(x, λ) = f(x)− λ⊤(g(x)− b∗) is minimized to φ(b∗).

Compare, for example, two problems: (i) minimizex2 s.t. x = b, and (ii)

minimizex2 s.t. x4 = b. In (i) we have φ(b) = b2 and L(x, λ) = x2 − λ(x − b) is
minimized at x = b when we take λ = 2b, whereas in (ii) we have φ(b) = b1/2 and

there is no λ such that L(x, λ) = x2 − λ(x4 − b) is minimized at x = b, (since for
λ > 0 the minimum is at x =∞, and for λ ≤ 0 the minimum is at x = 0.)

The following theorem gives simple conditions under which φ(b) is convex in b.

Theorem 8.2 (Sufficient conditions for Lagrangian methods to work). Let
P (b) be the problem: minimize f(x) s.t. g(x) ≤ b and x ∈ X. If the functions f, g

are convex, X is convex and x∗ is an optimal solution to P, then there exist Lagrange
multipliers λ ∈ R

m such that L(x∗, λ) ≤ L(x, λ) for all x ∈ X.

In particular, Lagrange multipliers always exist in linear programming programs,

provided they have optimal solutions (i.e., are feasible and bounded).

Assuming the supporting hyperplane theorem, the proof of Theorem 8.2 relies
on showing that φ(b) is convex. To see this, suppose that xi is optimal for P (bi),

i = 1, 2. Let x = θx1 + (1 − θ)x2, and b = θb1 + (1 − θ)b2. Convexity of X
implies x ∈ X, and convexity of g implies g(x) ≤ b, so x is feasible for P (b). So

φ(b) ≤ f(x) ≤ θf(x1) + (1 − θ)f(x2) = θφ(b1) + (1 − θ)φ(b2), where the second
inequality follows from convexity of f . Thus φ(b) is convex in b.

32

9 Two Person Zero-Sum Games

9.1 Games with a saddle-point

We consider games that are zero-sum, in the sense that one player wins what the

other loses. The players make moves simultaneously. Each has a choice of moves
(not necessarily the same). If player I makes move i and player II makes move j then

player I wins (and player II loses) aij. Both players know the m×n pay-off matrix
A = (aij).

II plays j

1 2 3 4
1 −5 3 1 20

I plays i 2 5 5 4 6 ← (aij)

3 −4 6 0 −5

Let us ask what is the best that player I can do if player II plays move j.

II’s move: j = 1 2 3 4
I’s best response: i = 2 3 2 1

I wins 5 6 4 20 ← column maximums

Similarly, we ask what is the best that player II can do if I plays move i?

I’s move: i = 1 2 3
II’s best response: j = 1 3 4

I wins −5 4 −5 ← row minimums

Here the minimal column maximum = minj maxi aij = maximinj aij = maximal
row minimum = 4, when player I plays 2 and player II plays 3. In this case we say

that A has a saddle-point (2, 3) and the game is solved.

Remarks. The game is solved by ‘I plays 2’ and ‘II plays 3’ in the sense that

1. Each player maximizes his minimum gain.

2. If either player announces any strategy (in advance) other than ‘I plays 2’ and
‘II plays 3’, he will do worse.

3. If either player announces that he will play the saddle-point move in advance,
the other player cannot improve on the saddle-point.

9.2 Example: Two-finger Morra, a game without a saddle-point

Morra is a hand game dating from Roman and Greek times. Each player displays
either one or two fingers and simultaneously guesses how many fingers his opponent

33

will show. If both players guess correctly or both guess incorrectly then the game
is a tie. If only one player guesses correctly, then that player wins from the other

player an amount equal to the total number of fingers shown. A strategy for a player
is (a, b) =‘show a, guess b’. The pay-off matrix is

(1,1) (1,2) (2,1) (2,2)

(1,1) 0 2 −3 0
(1,2) −2 0 0 3

(2,1) 3 0 0 −4
(2,2) 0 −3 4 0

= (aij)

Column maximums are all positive and row minimums are all negative. So there

is no saddle point (even though the game is symmetric and fair). If either player
announces a fixed strategy (in advance), the other player will win.

We must look for a solution to the game in terms of mixed strategies.

9.3 Determination of an optimal strategy

Each player must use a mixed strategy. Player I plays move i with probability pi,
i = 1, . . . , m and player II plays moves j with probability qj, j = 1, . . . , n. Player I’s
expected payoff if player II plays move j is

∑

i

piaij .

So player I attempts to

maximize

{

min
j

∑

i

piaij

}

s.t.
∑

i

pi = 1, pi ≥ 0.

Note that this is equivalent to

P: max v s.t.
∑

i

aijpi ≥ v, each j, and
∑

i

pi = 1, pi ≥ 0,

since v on being maximized will increase until it equals the minimum of the
∑

i aijpi.
By similar arguments, player II’s problem is

D: min v s.t.
∑

j

aijqj ≤ v, each i, and
∑

j

qj = 1, qj ≥ 0.

It is possible to show that P and D are duals to one another (by the standard
technique of finding the dual of P). Consequently, the general theory gives sufficient

conditions for strategies p and q to be optimal.
Let e denote a vector of 1s, the number of components determined by context.

34

Theorem 9.1. Suppose p ∈ R
m, q ∈ R

n, and v ∈ R, such that

(a) p ≥ 0, e⊤p = 1, p⊤A ≥ ve⊤ (primal feasibility);

(b) q ≥ 0, e⊤q = 1, Aq ≤ ve (dual feasibility);

(c) v = p⊤Aq (complementary slackness).

Then p is optimal for P and q is optimal for D with common optimum (the value
of the game) v.

Proof. The fact that p and q are optimal solutions to linear programs P and D follows

from Theorem 3.4. Alternatively, note that Player I can guarantee to get at least

min
q

p⊤Aq ≥ min
q
(ve⊤)q = v,

and Player II can guarantee that Player I gets no more than

max
p

p⊤Aq ≤ max
p

p⊤(ve) = w = v.

In fact, (c) is redundant; it is implied by (a) and (b).

Remarks.

1. Notice that this gives the right answer for a game with a saddle-point (i∗, j∗),
(i.e., v = ai∗j∗, with pi∗ = qj∗ = 1 and other pi, qj = 0).

2. Two-finger Morra has an optimal solution p = q = (0, 35,
2
5, 0), v = 0, as can

be easily checked. E.g. p⊤A = (0, 0, 0, 1/5) ≥ 0 × 1⊤. It is obvious that we
expect to have p = q and v = 0 since the game is symmetric between the players
(A = −A⊤). A is called an anti-symmetric matrix.

The optimal strategy is not unique. Another optimal solution is p = q =
(0, 47,

3
7 , 0). Player I can play any mixed strategy of the form (0, θ, 1 − θ, 0)

provided 4
7
≤ θ ≤ 3

5
.

3. These conditions allow us to check optimality. For small problems one can often

use them to find the optimal strategies, but for larger problems it will be best to
use some other technique to find the optimum (e.g., simplex algorithm). Note,

however, that the problems P and D are not in a form where we can apply
the simplex algorithm directly;v does not have a positivity constraint. Also
the constraints are

∑

i aijpi − v = 0 with r.h.s.= 0. It is possible, however, to

transform the problem into a form amenable to the simplex algorithm.

(a) Add a constant k to each aij so that aij > 0 each i, j. This doesn’t change
anything, except the value which is now guaranteed to be positive (v > 0).

35

(b) Change variables to xi = pi/v. We now have that P is

max v s.t.
∑

i

aijxi ≥ 1,
∑

i

xi = 1/v, xi ≥ 0,

which is equivalent to

min
∑

i

xi s.t.
∑

i

aijxi ≥ 1, xi ≥ 0

and this is the type of LP that we are used to.

9.4 Example: Colonel Blotto

Colonel Blotto has three regiments and his enemy has two regiments. Both comman-
ders are to divide their regiments between two posts. At each post the commander

with the greater number of regiments wins one for each conquered regiment, plus one
for the post. If the commanders allocate equal numbers of regiments to a post there

is a stand-off. This gives the pay-off matrix

Colonel

Blotto

Enemy commander

(2,0) (1,1) (0,2)

(3,0) 3 1 0

(2,1) 1 2 −1
(1,2) −1 2 1

(0,3) 0 1 3

Clearly it is optimal for Colonel Blotto to divide his regiments (i, j) and (j, i) with

equal probability. So the game reduces to one with the payoff matrix

(2,0) (1,1) (0,2)

(3,0) or (0,3) 3
2 1 3

2

(2,1) or (1,2) 0 2 0

To derive the optimal solution we can

(a) look at player Colonel Blotto’s original problem: maximize {minj
∑

i piaij}, i.e.,
maximizepmin{32p, p+ 2(1− p)},

(b) attempt to derive p, q, v from the conditions of Theorem 9.1, or

(c) convert the problem as explained above and use the simplex method.

For this game, p = (45,
1
5), q = (15,

3
5,

1
5) and v = 6

5 is optimal. In the the original
problem, this means that Colonel Blotto should distribute his regiments as (3,0),
(2,1), (1,2), (0,3) with probabilities 2

5
, 1
10
, 1
10
, 2
5
respectively, and his enemy should

distribute hers as (2,0), (1,1), (0,2) with probabilities 1
5,

3
5,

1
5 respectively.

36

10 Maximal Flow in a Network

10.1 Max-flow/min-cut theory

Consider a network consisting of n nodes labelled 1, . . . , n and directed edges between

them with capacities cij on the arc from node i to node j. Let xij denote the flow in
the arc i→ j, where 0 ≤ xij ≤ cij.

v v
1 n

Problem: Find maximal flow from node 1 (the source) to node n (the sink)

subject to the conservation of flow at nodes, i.e.,

maximize v s.t. 0 ≤ xij ≤ cij, for all i, j

and

flow out of
node i

− flow into
node i

=
∑

j∈N
xij −

∑

j∈N
xji =

v if i = 1

0 if i = 2, . . . , n− 1
−v if i = n

where the summations are understood to be over existing arcs only. v is known as
the value of the flow.

This is obviously an LP problem, but with lots of variables and constraints. We
can solve it more quickly (taking advantage of the special network structure) as

follows.

Definition 10.1. A cut (S, S̄) is a partition of the nodes into two disjoint subsets
S and S̄ with 1 ∈ S and n ∈ S̄.

Definition 10.2. The capacity of a cut

C(S, S̄) =
∑

i∈S,j∈S̄
cij.

Thus given a cut (S, S̄) the capacity of the cut is the maximal flow from nodes
in S to nodes in S̄. It is intuitively clear that any flow from node 1 to node n must
cross the cut (S, S̄), since in getting from 1 to n at some stage it must cross from S

to S̄. This holds for any flow and any cut.

37

Example 10.1.

2

11

1

1

1

3

3

3

4

Cut S = {1, 3}, S̄ = {2, 4}, C(S, S̄) = 3. Check that the maximal flow is 3.

In fact, we have:

Theorem 10.1 (Max flow/min cut Theorem). The maximal flow value through the
network is equal to the minimal cut capacity.

Proof. Summing the feasibility constraint

∑

j∈N
xij −

∑

j∈N
xji =

v if i = 1

0 if i = 2, . . . , n− 1
−v if i = n

over i ∈ S, yields

v =
∑

i∈S,j∈N
xij −

∑

j∈N,i∈S
xji

=
∑

i∈S,j∈S̄
xij −

∑

j∈S̄,i∈S
xji

≤ C(S, S̄)

since for all i, j we have 0 ≤ xij ≤ cij. Hence the value of any feasible flow is less

than or equal to the capacity of any cut.

So any flow ≤ any cut capacity, (and in particular max flow ≤ min cut).

Now let f be a maximal flow, and define S ⊆ N recursively as follows:

(1) 1 ∈ S.
(2) If i ∈ S and xij < cij, then j ∈ S.
(3) If i ∈ S and xji > 0, then j ∈ S.

Keep applying (2) and (3) until no more can be added to S.

38

So S is the set of nodes to which we can increase flow. Now if n ∈ S we can
increase flow along a path in S and f is not maximal. So n ∈ S̄ = N \ S and (S, S̄)

is a cut. From the definition of S we know that for i ∈ S and j ∈ S̄, xij = cij and
xji = 0, so in the formula above we get

v =
∑

i∈S,j∈S̄
xij −

∑

j∈S̄,i∈S
xji = C(S, S̄).

So max flow = min cut capacity.

Corollary 10.2. If a flow value v = cut capacity C then v is maximal and C minimal.

The proof suggests an algorithm for finding the maximal flow.

10.2 Ford-Fulkerson algorithm

1. Start with a feasible flow (e.g., xij = 0).

2. Construct S recursively by the algorithm defined in the box above.

3. If n ∈ S then there is a path from 1 to n along which we can increase flow by

ǫ = min
(ij)

max[xji, cij − xij] > 0.

where the minimum is taken with respect to all arcs i→ j on the path.

Replace the flow by this increased flow. Return to 2.

If n 6∈ S then the flow is optimal.

The algorithm is crude and simple; we just push flow through where we can, until
we can’t do so anymore. There is no guarantee that it will be very efficient. With

hand examples it is usually easy to ‘see’ the maximal flow. You just demonstrate
that it is maximal by giving a cut with the same capacity as the flow and appeal to

the min cut = max flow theorem.

The algorithm can be made not to converge if the capacities are not rational
multiples of one another. However,

Theorem 10.3. If capacities and initial flows are rational then the algorithm termi-

nates at a maximal flow in a finite number of steps. (Capacities are assumed to be
finite.)

Proof. Multiply by a constant so that all capacities and initial flows are integers.

The algorithm increases flow by at least 1 on each step.

39

Example: Failure to stop when capacities and initial flows are not rational

a

b

c

d

e

f

0

0

0
0

0

0

0

0
1

1

1

1

ww
w

w

ww

w2 w2

+w

+w

The network consists of a square b c d e of directed arcs of capacity 1. The corners of

the square are connected to a source at a and a sink at f by arcs of capacity 10. The
initial flow of 1+w is shown in the first picture, where w = (

√
5−1)/2, so 1−w = w2.

The first iteration is to increase flow by w along a → c → b → e → d → f . The
second increases it by w along a → d → e → b → f . The flow has increased by 2w

and the resulting flow in the square is the same as at the start, but multiplied by w
and rotated through 180o. Hence the algorithm can continue in this manner forever

without stopping and never reach the optimal flow of 40.

10.3 Minimal cost circulations

Definition 10.3. A network is a closed network if there is no flow into or out of
the network.

Definition 10.4. A flow in a closed network is a circulation if
∑

j xij−
∑

j xji = 0
for each node i.

Most network problems can be formulated as the problem of finding a minimal
cost circulation in a closed network where there are capacity constraints c−ij ≤
xij ≤ c+ij on arcs (i, j) and a cost per unit flow of dij in arcs (i, j). The full problem
is

minimize
∑

ij

dijxij

subject to
∑

j

xij −
∑

j

xji = 0, each i, and c−ij ≤ xij ≤ c+ij.

Definition 10.5. A circulation which satisfies the capacity constraints is called a
feasible circulation.

There is a beautiful algorithm called the out-of-kilter algorithm which will solve
general problems of this kind. It does not even require a feasible solution with which

to start. In the next lecture we shall just derive conditions for a flow to be optimal.
We shall also see, although it should be obvious already, that the max flow problem

that is studied in this lecture can be formulated as a minimal cost circulation problem.

40

11 Minimum Cost Circulation Problems

11.1 Sufficient conditions for a minimal cost circulation

Recall the minimum cost circulation problem:

minimize
∑

ij

dijxij

subject to
∑

j

xij −
∑

j

xji = 0, each i, and c−ij ≤ xij ≤ c+ij.

Consider the Lagrangian for the problem of finding the minimum cost circulation.
We shall treat the capacity constraints as the region constraints, so

X = {xij : c
−
ij ≤ xij ≤ c+ij}.

We introduce Lagrange multipliers λi (one for each node) and write

L(x, λ) =
∑

ij

dijxij −
∑

i

λi

(

∑

j

xij −
∑

j

xji

)

Rearranging we obtain

L(x, λ) =
∑

ij

(dij − λi + λj)xij.

We attempt to minimize L(x, λ) in X.

Provided c−ij, c
+
ij are finite we see that there is a finite minimum for all λ, achieved

such that

xij =

{

c−ij if dij − λi + λj > 0

c+ij if dij − λi + λj < 0
(1)

c−ij ≤ xij ≤ c+ij if dij − λi + λj = 0. (2)

Theorem 11.1. If (xij) is a feasible circulation and there exists λ such that (xij), λ

satisfy conditions (1) and (2) above, then (xij) is a minimal cost circulation.

Proof. Apply the Lagrangian sufficiency theorem.

Definition 11.1. The Lagrange multipliers λi are usually known as node numbers

or potentials in network problems.

Definition 11.2. λi − λj is known as the tension in the arc (i, j).

41

11.2 Max-flow as a minimum cost circulation problem

The maximal flow problem we studied earlier can be set up as a minimal cost
circulation problem. For each arc in the network we assign a capacity constraint

0 ≤ xij ≤ c+ij and all cost dij = 0. Add an arc from node n to 1 with no capacity
constraint and cost −1.

1 n

cost −1

vv

S S̄

The cost of the circulation is −v, so minimizing −v is the same as maximizing v.
Let us seek node numbers λi which will satisfy optimality for this problem. Since

arc (n, 1) has no capacity constraints, for a finite optimum we will require

dn1 − λn + λ1 = 0 =⇒ λ1 = λn + 1.

Let us set λn = 0, λ1 = 1. (Since it is only the differences in the λs that matter, we

can pick one arbitrarily.) Let (S, S̄) be a minimal cut. Assign λi = 1 for i ∈ S and
λi = 0 for i ∈ S̄. Now check that
(a) For i, j ∈ S or i, j ∈ S̄ =⇒ dij − λi + λj = 0 so xij can take any feasible value.

(b) For i ∈ S, j ∈ S̄ we have

dij − λi + λj = 0− 1 + 0 = −1 =⇒ xij = c+ij.

(c) For i ∈ S̄, j ∈ S we have

dij − λi + λj = 0− 0 + 1 = 1 =⇒ xij = 0.

But conditions (a)–(c) are precisely those satisfied by a maximal flow and minimal
cut.

If we like, we can say that the Ford-Fulkerson algorithm in looking for a cut is
trying to find node numbers and a flow to satisfy optimality conditions.

Remark

In many problems it is natural to take c−ij = 0, c+ij =∞. In this case we will achieve
a finite optimum only if dij − λi + λj ≥ 0 for each arc.

42

Theorem 11.2. For a minimal cost circulation problem with capacity constraints
0 ≤ xij < ∞ on each arc (i, j), if we have a feasible circulation (xij) and node

numbers λi such that

dij − λi + λj ≥ 0, each (i, j), and

xij = 0 if dij − λi + λj > 0,

then (xij) is optimal.

Proof. Apply the Lagrangian sufficiency theorem.

Note: The optimality conditions imply (dij−λi+λj)xij = 0 in this case (comple-

mentary slackness).

11.3 The transportation problem

Consider a network representing the problem of a supplier who has n supply depots
from which goods must be shipped tom destinations. We assume there are quantities

s1, . . . , sn of the goods at depots {S1, . . . , Sn} and that the demands at destinations
{D1, . . . , Dm} are given by d1, . . . , dm. We also assume that

∑

i si =
∑

j dj so that
total supply = total demand. Any amount of goods may be taken directly from

source i to destination j at a cost of dij (i = 1, . . . , n; j = 1, . . . , m) per unit. One
formulation of the problem is

minimize
∑

ij

dijxij

subject to
∑

j

xij = si each i,
∑

i

xij = dj each j

with xij ≥ 0 each i, j

Here xij is the flow from Si to Dj . The network looks like:

s1

s2

sn

d1

d2

dm

n sources m destinations

43

with arcs (i, j), 0 ≤ xij <∞, and cost dij per unit flow.
The Lagrangian for the problem can be written

L(x, λ, µ) =
∑

ij

dijxij −
∑

i

λi

(

∑

j

xij − si

)

+
∑

j

µj

(

∑

i

xij − dj

)

,

where we label Lagrange multipliers (node numbers) λi for sources and µj for destina-

tions. (We choose the sign of µj in this apparently unusual way since it is convenient
to think of the demands dj as being negative supplies. In Section 12.2, we describe
he simplex-on-a-graph algorithm, for a problem in which we suppose that there is a

supply bi at each node i.) Rearranging,

L(x, λ, µ) =
∑

ij

(dij − λi + µj)xij +
∑

i

λisi −
∑

j

µjdj.

This will have a finite minimum in xij ≥ 0, and the minimum occurs with (dij −
λi + µj)xij = 0 on each arc. Thus the Lagrangian sufficiency theorem give the same
optimality conditions as before.

Theorem 11.3. A flow xij is optimal for the transportation problem if ∃ λi, µj such
that dij − λi + µj ≥ 0 each (i, j) and (dij − λi + µj)xij = 0.

Proof. The Lagrangian sufficiency theorem applies.

Remark

It is no surprise that the same optimality conditions appear as in the minimal cost
circulation problem. If we augment the transportation network by connecting all

sources and all destinations to a common ‘artificial node’ by arcs where the flow is
constrained to be exactly that which is required (and zero cost) we obtain the same
problem as in minimal cost circulation form.

cost dij

0 ≤ xij <∞

cost d0i = 0 cost dj0 = 0

arcs si ≤ x0i ≤ si arcs dj ≤ xj0 ≤ dj

0

The optimality conditions on the extra arcs are automatically satisfied by a feasible
flow since xj0 = dj, x0i = si regardless of node numbers.

44

12 Transportation and Transshipment Problems

12.1 The transportation algorithm

1. Set out the supplies and costs in a table as below

D1 D2 D3 D4

S1 5 3 4 6
8

S2 2 7 4 1
10

S3 5 6 2 4
9

6 5 8 8

2. Allocate an initial feasible flow (by North-West corner rule or any other sensible
method). NW corner rule says start at top left corner and dispose of supplies

and fulfill demands in order i, j increasing. In our case we get

6
5

6
3 4 6

2
3

7
7

4 1

5 6
1

2
8

4

6 5 8 8

In the absence of degeneracy (which we assume) we will obtain (m + n − 1)

non-zero entries in a ‘stair-case’ arrangement.

Remark. In our network picture we have constructed a feasible flow on a
spanning tree of m+ n− 1 arcs connecting n sources and m destinations.

1

2

2

2

3

6

7

8

0

0

4

−5

−3

45

A set of arcs is spanning if it connects all nodes. It is a tree if it contains no

circuits. A spanning tree is the equivalent of a basic solution for this problem.

3. For optimality we require dij−λi+µj = 0 on any arc with non-zero flow. Set λ1 =
0 (arbitrarily) and then compute the remaining λi, µj by using dij − λi +µj = 0
on arcs for which xij > 0. On the table we have

λi \ µj −5 −3 0 −2

0 6
5

2
3 4 6

4
2

3
7

7
4 1

2
5 6

1
2

8
4

The node numbers are also shown on the network version above. With non-zero

flows forming a spanning tree we will always be able to compute uniquely all
node numbers given one of them.

4. We now compute λi − µj for all the remaining boxes (arcs) and write these
elsewhere in the boxes. E.g.,

λi \ µj −5 −3 0 −2

0 6
5

2
3

0

4
2

6

4 9

2
3

7
7

4
6

1

2 7

5
1

6
1

2
8

4

5. If all dij ≥ λi − µj, then the flow is optimal. Stop.

6. If not, (e.g., i = 2, j = 1, where λ2−µ1 = 9 > 7−d21) we attempt to increase the
flow in arc (i, j) for some (i, j) such that λi − µj > dij. We seek an adjustment

of +ǫ to the flow in arc (i, j) which keeps the solution feasible (and therefore
preserves total supplies and demands). In our case we do this by

6− ǫ 2 + ǫ 0 0

+ǫ 3− ǫ 7 0

0 0 1 8

and pick ǫ as large as possible (without any flow going negative) to obtain a
new flow (for ǫ = 3).

46

There is only one way to do this in a non-degenerate problem. The operation
is perhaps clearer in the network picture.

1

2 + ǫ

3− ǫ

6− ǫ

7

8

+ǫ

We attempt to increase flow in the dotted arc. Adding an arc to a spanning
tree creates a circuit. Increase flow around the circuit until one arc drops out,

leaving a new spanning tree. The new solution is

1

3

3

5

7

8

7. Now return to step 3 and recompute node numbers. of

λi \ µj −5 −3 −7 −9
0 3

5
5

3
7

4
9

6

−3 3
2

0

7
7

0
0

1

−5 0

5
−2

6
1

2
8

4

In our example we obtain λi = 0,−3,−5 and µj = −5,−3,−7,−9 at the next

stage. The expression dij−λi+µj < 0 for (i, j) = (1, 3), (2, 4) and (1, 4). Increase
the flow in (2, 4) by 7 to obtain the new flow below. This is now optimal, as we

47

can check from the final node numbers:

λi \ µj −5 −3 −2 −4
0 3

5
5

3
2

4
4

6

−3 3
2

0

7
−1

4
7

1

0 5

5
3

6
8

2
1

4

Remark. The route around which you may need to alter flows can be quite compli-
cated though it is always clear how you should do it. For example, had we tried to

increase the flow in arc (3, 1) instead of (2, 1) at step 5 we would have obtained

6− ǫ 2 + ǫ 0 0

0 3− ǫ 7 + ǫ 0

+ǫ 0 1− ǫ 8

To summarise:

1. Pick initial feasible solution with m+ n− 1 non-zero flows (NW corner rule).

2. Set λ1 = 0 and compute λi, µj using dij − λi + µj = 0 on arcs with non-zero

flows.

3. If dij − λi + µj ≥ 0 for all (i, j) then flow is optimal.

4. If not, pick (i, j) for which dij − λi + µj < 0.

5. Increase flow in arc (i, j) by as much as possible without making the flow in any

other arc negative. Return to 2.

12.2 *Simplex-on-a-graph*

The transportation algorithm can easily be generalised to a problem of minimizing
costs in a general network with constraints 0 ≤ xij < ∞ on each arc and flows

bi into the network at each i (though it is hard to keep track of all the numbers
by hand). Here we don’t label sources and destinations separately, but do allow

bi ≥ 0 and bi ≤ 0. Clearly,
∑

i bi = 0 for conservation of flow. The simplex-on-a-
graph algorithm solves this problem in an identical fashion to the transportation
algorithm. Once again a basic solution is a spanning tree of non-zero flow arcs.

1. Pick an initial basic feasible solution. Obtain n− 1 non-zero flow arcs.

2. Set λ1 = 0 and compute λi on other nodes using dij − λi+ λj = 0 on arcs of the
spanning tree.

48

3. Compute dij − λi + λj for other arcs. If all these are ≥ 0 then optimal. If not,
pick (i, j) such that dij − λi + λj < 0.

4. Add arc (i, j) to the tree. This creates a circuit. Increase flow around the circuit
(in direction of arc (i, j)) until one non-zero flow drops to zero and a new basic

solution is created. Return to 2.

If it is hard to find an initial basic solution then there is a two-phase version of the
algorithm (just as for the ordinary simplex algorithm).

Phase I. Add artificial node 0 with arcs from all nodes with bi > 0 and to all nodes
with bi < 0. For Phase I objective put costs of 1 on all arcs to and from node 0
and costs 0 elsewhere in the network. The initial basic solution for Phase I is the

spanning tree consisting of the node 0 and all arcs joining it to the original nodes.
At the end of Phase I (if the original problem was feasible) you will have reduced

the Phase I cost to 0 (no flow in arcs to or from node 0), so have a basic solution
(Spanning tree solution) for the original problem.

Phase II. Solve the original problem using the initial solution found by Phase I.

There are several applications of the network theory to problems of graph theory
and operations research on the further examples sheet.

12.3 Example: optimal power generation and distribution

The following real-life problem can be solved by the simplex-on-a-graph algorithm.

12

3 4

5

67

8

9

10

11

12

London

Scotland

Cumbria Northeast

Northwest Yorkshire

Wales

Central

Southwest

Southcoast Thames

Midlands

49

The demand for electricity at node i is di. Node i has ki generators, that can generate
electricity at costs of ai1, . . . , aiki, up to amounts bi1, . . . , biki. There are n = 12 nodes

and 351 generators in all. The capacity for transmission from node i to j is cij (= cji).
Let xij = amount of electricity carried i → j and let yij = amount of electricity

generated by generator j at node i. The LP is

minimize
∑

ij

aijyij

subject to
∑

j

yij −
∑

j

xij +
∑

j

xji = di, i = 1, . . . , 12,

0 ≤ xij ≤ cij, 0 ≤ yij ≤ bij.

In addition, there are constraints on the maximum amount of power that may be

shipped across the cuts shown by the dotted lines in the diagram.

50

