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1 Introduction

The course is of 16 lectures consisting of four topics of ldy@qual duration with emphasis on appli-
cations, rather than general theory. Thus the examplessareportant as formal theorems. The topics
are

e Analytic (or holomorphic) functions, the main applications are to

a) Solving Laplace’s equation at¥, which is essential for electrostatic and fluid dynamicalypr
lems.

b) Conformal Mappings, which may also be used for solvinglaegis equation but which also
have applications to many other problems including Cagply.

e Contour Integrals

a) Cauchy’s Theorem as an application of Stokes’s Theorert on
An important application is to

b) The evaluation of real integrals such as

oo e 2
/ dx ’ / dx / do . (1.1)
o 1+ ab o 1+ a3 o (14 3cos?0)

e Residue Calculuswhich is an algorithm for the evaluation of contour integray an examination
of the singularities of the integrand (called in this contieir poles.

e Fourier and Laplace transformations. The first should be familiar: it allows one to reduce the
solution of ordinary and partial differential equations.CE.'s and P.D.E.’s) to algebra and the
evaluation of integrals using the formulae

a) if
F(ft) = flw) = f(t)e ™" dt (1.2)

with inverse

L[> :
— +iwt 1
F0) =5 | Fwreras (L3)
The evaluation of either (1.2) or (1.3) is often most coneatly effected using contour integration.

b) The Laplace transform is defined by

LIf#) = f(s):= /OO e S f(t)dt, seC (1.4)

0

and the inversion formula analogous to (1.3) is a contoegiral.



2 Books

Almost all “mathematical methods "books contain an accadimiost of the material in this course. One
such is

G. Arfken and H. Webetylathematical Methods for Physicists
Rather more mathematically detailed is

H Priestleyintroduction to Complex Analysis
Two other good books are

| Stewart and B. TalComplex Analysis

and

M J Ablowitz and A.S. Foka€omplex Variables

The latter goes somewhat beyond the course.
While preparing the lectures | made use of, among others,

E.G. PhillipsFunctions of a Complex Variahle

3 Analytic Functions

3.1 Complex numbers and the complex plane

The special flavour of complex analysis arises because ogehirk of the complex numbers both
algebraicallyas a number system amgegometricallyas a vector space. It is essential therefore to have a
good geometrical intuition for the complex plane and so wadlsttart by briefly reviewing what should
be well known.

Complex numbers are points ink? with coordinategz, y) € R x R equipped with a commutative
and associative multiplication law written

2,2 — 22 =22 (3.1)

given by
(z, ) (@', y) = (x2’ —yy', 2y’ + 2'y) (3.2)
We may takel = (1,0) andi = (0, 1) as a basis for? * and write

z=x+1y, with % = —1. (3.3)
complex conjugatiors reflection in the horizontal axis

(Z, y) - (ZC, _y) =z (34)

In some textbooks for scientists and engineers one sassd rather thain Vectors in the complex plane, especially of
the forme’«?, with ¢ being thought of as time are often callgldasorsand represented by arrows which, for positivegotate
in an anticlockwise sense as time increases. The complgxgate of a phasor is an anti-phasor which rotates in a cl@sekw
sense.




such that
22 =27 etc (3.5)

Thenormor modulusof a complex number is defined by

2| == Va2 +y2 = Vzz (3.6)

the positivesquare root being taken. The plareso equipped is called treomplex planend denoted
C.
On may introducgolar coordinategr, #) for C \ 0, they consist of the

modulus ro= Vat+y?r=|z, (3.7)

and phase 0 = argz= arctan(%) . (3.8)

Obviously, the phasé is not defined at the origif0, 0) because the all radial coordinate lines=
constant intersect there. Moreover there is some ambiguity in taitiegnverse when defining-ctan(y/x
It is also clear, that whatever origin we chosefor.e. whatever radial coordinate lile= constant on
which we set) = 0,

0 is only defined up to addition of an integer multiple2af , unless we fix a conventiqn (3.9)

ThePrincipal Valueof the functionarctan(y/z) is defined by
—T<argz < (3.10)

We have not defined precisely along the negative real axis and it clearly jump&bas we cross
the negative real axis. These elementary observationbwiinportant later. In the mean time we turn
to

3.2 Complex Valued Functions

A complex functioor more precisely aomplex valued functiofs just a map; : ¢ — ¢, which we may
also regard as a map: R? — R?, sending

(z,y) — (u(z,y),v(z,9)), (3.11)
ie. z — w=u(zr,y)+iv(z,y) =9g(z,2). (3.12)

It is sometimes helpful to think ab as lying in its own “complexv plane ”. In what follows we may
need to drop the requirement thabe defined for alC. It may, for example only be defined in an open
subset oft. This is done as follows. We have first

Definition  An open disd)(z, R) of radius R centred on some point given by
D(zp,R)={z: |z— 2] <R}. (3.13)

Definition  An open set/ C C is a (possibly infinite) union or a finite intersection of opscs.



Since _
Z+Zz z—Z

2 Y=o
an equivalent way of specifying a complex valued functignais indicated in the second equation of
(3.12), to use, z rather thanr, y as coordinates fak?, considered as the domain of the mggnd hence
to adopt a notation in which as expressed as a functionzohndz. In other words, within its domain of
definition, we write

(3.14)

xr =

w=u(C2 ) i ) = g(,9) (3.15)

Example
u=2>—y’+zx, v=2xy — vy (3.16)
g(z,2) =2+ 2 (3.17)

By contrast, if we had considered the function
u=2x> -y +ux, v=2xy+vy (3.18)

we would have had
g(z,2) =2+ 2. (3.19)

3.3 Analytic or holomorphic functions

We see that the expressigfz, z) giving g will in general contain both and z but it can happen that
terms involvingz are absent. Such functions are referred tamalytic or holomorphic They are also
sometime as referred to esgular. Intuitively they depend only but not onz. We shall give a precise
definition shortly. Whatever one calls them, they have magguliful properties, and from now on we
shall mainly work with such functions which we shall write as

z—w = f(2). (3.20)

Of course there is an obvious notion arfiti-analytic or anti-holomorphicfunction obtained by inter-
changingz andz, One way to make precise the idea tliaoes not depend cnis consider the analogue
of thecomplex derivativeSuppose is defined in a open disc abouyt We might consider evaluating

g9(z0+h) - g(zo))

d .
g (20) = & _ lim ( -

5 = im (3.21)

The problem is that sinceis an infinitesimal 2-vector, as igz, + h) — g(z0), and we are attempting to
divide a vector by a vector and the limit may fail to exist foraiety of reasons e.g.

e g(z) may be ill-defined, for examplgz) = % atz, = 0.

e more significantlythe limit may depend on the direction in which we take the tjtivat is it may
depend onv = arg h.



Example ¢g=72 -
— =lim—=¢e """, a=argh (3.22)
which clearly depends on direction, i.e. anWe would have similar problems with say

d(22%) _ . (z+h)(Z+h)? — 222

3.23
dz h—0 h ( )
but not with 2 12 ,
() o G =2 o =0 (3.24)
dz h—0 h—0

Thus we adopt the following

Definition  f(z) is holomorphic or analytic or differentiable in an open diB¢z,, ) (or more gener-
ally an open set/ C Q) if the derivativef’ existsvz € U.

Definition  f(z) is analytic atz, € C if there exists a disd(z,, R) such thatf(z) is analytic in
D(Zo, R)

Definition A functionf(z) is said to be singular at; if it not analytic atz,

Definition  An entire functionf(z) is one which is analytic in the entire complex plane

Example A polynomial inz is entire . The functionsin z andcos z are entire.

It may be proved that if a function is once complex differahte in a disd( z,, R), then itis infinitely
complex differentiable. Moreover it has a Taylor seriesaprs ofz, with no z's, centred oz, with
which converges withinD(zy, R). This latter property is often taken as the definition of aalyiic
function. In fact it may be shown that it implies the definitiwhich we have adopted.

3.4 The Cauchy Riemann Equations

Theorem A necessary and sufficient condition thyét) = u + v to be analytic inU' C € is thatu and
v have continuous first partial derivatives and and such that

ou  Ov ou ov
o = 2
or 0Oy’ Ay Ox (3.25)
We prove the necessity and omit the sufficiency: i§ real we find that
dg Ou . Ov
E - 6_:E + Za—x . (3.26)
If his pure imaginary
dg Ov  Ou
- A 3.27
dz 0Oy Z(’3y ( )

Equating real and imaginary parts gives the CR equatio2%)3.
We may make contact with our previous intuitive idea that morphic function depends onbut

not z by defining
g 1,0 0 g 1,0 0

ol ey wm ety 429



Thus

0z 0z 0z 0z
=1, =0, =1, ==0 (3.29)
We expect that holomorphic functigf{z) = u + v should satisfy
of 1,90 .0 :
£—§(%+za—y)(u+w) =0. (3.30)

Equating real and imaginary parts gives (3.25) as expected.

Example Isu = e” cosy the real part of an analytic function? If so, whavi®
By the CR equations we must have

g—; =e"cosy, —g—; = —e"siny (3.31)

One checks that mixed partials are equal and integrates

v = e’siny + functionof x (3.32)
v = e’siny + functionof y (3.33)
Thus
f =¢e"(cosy +isiny) = e“""¥ 4 constant = e* + constant (3.34)
Example Is zZ analytic ?
— 2 2 _
u=x+y°, v=20, (3.35)

and the CR equations (3.25) are not satisfied.

3.5 Some Consequences of the Cauchy Riemann equations

Cor.1 (i) The producty f and (ii) the the composition = g o f of two holomorphic maps is holomorphic
Both properties are intuitively obvious but we can provertiermally using the CR equations (3.25)

() If f(z) =u(z,y) +iv(x,y) andg(z) = s(x,y) + it(x,y), then

gf = (us —vt) +i(vs + ut) (3.36)

Leibniz and the CR equations far v ands, ¢ show that(us — vt) and (vs + ut) also satisfy the CR
equations

(i) We have
w= f(2) =u(r,y) +iv(z,y), r=g(w) = s(u,v) +it(u,v) (3.37)
the composition is
r(z) = gof==g(f(2) (3.38)
= s(ul(e,y), 0z, y) + it(u(z, 1), 0, ) (3.39)

8



The chain rule gives

0ys = 0,50,u+ 9ys0v
Oyt = 0, Oyu+ 0yt Oyv

But
Ous = Oyt , 0yS = — 0Oyt ,
Oy = Oy , Oyu = —0,v
Thus
Ops = Oyt
A similar argument shows that
Oys = —0,t

Cor.2 The level setg = constant andv = constant are orthogonal.

The normals are
Vu = (0,u, Oyu) , Vo = (0,v, 0yv)

Thus

VuVv = 0,ud,v + dyud,v
= 0yv0,v — 0voyv =0,

by the CR equations (3.25).
Cor.3

’ 2

df
2 o _ |4
|Vul* = |V ’dz

On has by (3.25)

[Vul* = (Qu)* + (9,)* = (00)” + (9yu)*.

Moreover
df 1 , .
ol 5(&6 —10y) (u + iv)
1
=5 (Dpu + Oyv + i(0pv — Oyu))
= O,u—10,yu
= Oy + 10,

Cor.4 The Jacobiarl“? of the map is positive, i.e. the map preserves orientation

(z,y)

(3.40)
(3.41)

(3.42)
(3.43)

(3.44)

(3.45)

(3.46)

(3.47)
(3.48)

(3.49)

(3.50)

(3.51)

(3.52)

(3.53)
(3.54)
(3.55)



I(u, v) Uz Uy 2 2 2 2 2 2
o) = =v; +v, = |Vu|" = u; +u, = [Vul|”. (3.56)

Uy Uy

Definiton A closed curve: = ~(t) is one for which there is some least vallie> 0 for which
v(t) = v(t+T),Vt € R. A simple closed curve = ~(¢) is one for which ifz(t;) = z(t2) with
|ta — t1| < T impliest; = t, .

That is a simple closed curve does not intersect itself. §hoaf as a continuous map from the circle
S!to the planey : S! — R?itis 1 — 1 on its image. We shall often, but not always, chose the paeme
t along the curve such thdt = 27 and restrict the parameter to lie in the intevaf ¢ < 27.

The Jordan Curve Theorem States that a simple closed curyebounds a domairD topologically
equivalent (i.e. continuously deformable) to the unit digc< 1 and such thay = 9D maps to the unit
circle|z| =1

In what follows,we shall usually assume that the directibimereasing is chosen so that the domain
D is on one’s left hand side @sncreases, as it it would if one traversed the unit circlenmdirection of
increasing).

The positivity of the Jacobian (3.56) has the important egngence that if one follows a simple closed
curvey(t) = 0D given say by a complex valued periodic functiory of

z=z(t) = x(t) +iy(t), 2(t) = z(t + 2m) (3.57)

in the z-plane with the insidé) on ones left hand side @sncreases . The image = w(t) = f(y =
f(z(t)) in the w-plane will be a closed curv&~) and if it is simple, then the insidgé(D) will also be
on one’s left hand side asncreases.

Example Elliptical Coordinates ink?. Set

w=cosh ™'z =1In(z+ V22— 1). (3.58)

There is some ambiguity in the definition of the inverse, btislignore it for the time being. One has
x+1y = cosh(u+iv) (3.59)

= coshwucosv + isinhwusinw (3.60)

x = coshu cosv, y =sinhusinv. (3.61)

The curves: = constant andv = constant are ellipses and hyperbolae

(2P (=1 () ()=, (3.62)

coshu sinh « CcoS v sin v

Simple geometry shows that all the ellipses and all hypasate not only orthogonal but share the same
foci at (+1). The interval between the fo¢i-1 < = < 1) corresponds ta = 0. At large distances,
the hyperbolae = const approach the radial lines= v and the ellipses the circles= Je*. To cover

the (z,y) plane we need < u < oo and—7 < v < 7. The ellipses: = u, are simple closed curves,
parametrized by. As v increases the exteriar > wu, of an ellipse is on ones right hand side. The
ellipses are mapped to vertical intervélg, = < v < 7) in thew-plane, and the exterior is mapped to an
infinite strip on its right hand side.
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3.6 Harmonic Functions onr?

Definition A Harmonic functionp(x, y) onRr?, or possibly a open subset or domdinC R?, is a real
valued function satisfying Laplace’s equation

V2 =070+0:0=0. (3.63)

Clearly we needs to be suitably smooth. Having continuous second partialvdeves is certainly
sufficient for our definition to make sense. We have the falhgiymportant

Proposition  The real and imaginary parts of a functiof(z) which is analytic inD are harmonic.
Conversely, given a harmonic functigfz, y) , there is a so-called conjugate harmonic functiofx.y)
with orthogonal level sets such that= ¢ + iy is analytic inD.

The proof in one direction is a straight forward consequaitiee CR equations(3.25) and the equal-
ity of mixed partials. One has

OPu = 0,0, = 0,0,v = —6§u, (3.64)
Similarly for v. Alternatively we have
0
il — 3.65
5o ()=0 (3.65)
Thus
O (2 = 20, = i0,)(00 +i0,)f = 202 + 02— i0,0, +10,0,) f = V2 —0.  (3.66)
020z 4 v YN v Sy - '
Now take real and imaginary parts of (3.668Fonverselygiven a harmonic function(x, u), set
f(z)=0¢+iv (3.67)
for somey (z, y) to be found, and impose the CR equations (3.25)
Ou) = —=0,6 O = 0p0 (3.68)
The integrability condition for the exact differential
dyp = —¢,dx + ¢,dy (3.69)

is precisely Laplace’s equation (3.6&)lternatively, we can use the notation of vector analysis. We have
to solve

Vi =A (3.70)
where
A = (=0,0,0,0,0) (3.71)
The integrability condition is

curlA = VxA (3.72)

i j k
- &, 0, 0. (3.73)

- y¢ abe 0
= (0,0,0;0+05¢) = 0. (3.74)

11



Example

ea = en COS(y) + e sin(y) : a€R (3.75)
a a

These two solutions , together others obtained feom ande®= give the solutions one would obtain if
one separates variables, i.e. makesahgatz

o(z,y) = g(x)h(y) (3.76)

Example Electrostatics in the planeSincecurl E = V x E = 0, we haveE = —V¢ where¢ is
the electrostatic potential. SincevE = V.E = 0 we have¢ is harmonicV?¢ = 0. The curves
¢ = constant areisopotentialsand the orthogonal trajectorigs= constant areelectric field lines An
electric charge may rest in equilibrium at a point at whi¢h= 0, i.e at acritical point of ¢ at which
0.9 = 0 = 9,¢. By the Cauchy Riemann equations this is also a criticaltpafithe conjugate function
¥, at whichd,y = 0 = J,2p. Assuming that it is non-vanishing, the stability is go\eirby theHessian
i.e. the matrix of second partial derivatives

¢$m gbxy
Qbyx ¢yy

(3.77)

Since¢ solves Laplace’s equation (3.66) the Hessian matrix istfeee. This implies that if the eigen
values are both non-vanishing, then they cannot have the samn. In other words the critical pointis a
saddle pointand the equilibrium must therefore be unstable. This reswéalledEarnshaw’s Theorem
It also applies to the conjugate functigrwhich also has a saddle point at the same position.

Example f(z) = 2% = 2?2 — y? + 2izy has a saddle point at the origin. The isopotentials and field
lines make up two orthogonal families of of rectangular hippéae, the asymptotes of one system being
orthogonal to the asymptotes of the other.

In fact this is the general behaviour of an analytic functiothe vicinity of a point where the deriva-

tive vanishes% = 0, but the second derivative is non-vanishgzié £ 0.

3.7 Multi-valued functions, branch points and branch cuts

Most holomorphic functions one encounters areerttre, i.e. globally defined and holomorphic in the
entire complex plane, merely in some subset. In fact onauéetly defines a function locally in some
domainD and then seeks to find a larger, possible the largest, doRiain D in which it is well defined,
single valued and holomorphic.

Example [ = 23, Inz, 2%, a ¢z
Let's start withz2. There is an obvious ambiguity.In Cartesian coordinates we have

u? — P =z, 2uv =y, (3.78)
whose solution is
j: 2 2 j: / 2 2

12



We may fix this- ambiguity by demanding that andv? are real and positive

s TN+ Y2 Uz_\/x2+y2—x (3.80)
- 2 ’ 2 '

u

We thus have

2 2 2 2 _
o #W . i\/—vfcgyv@ (3.81)

There is apparently a choice of four possible sign combonatbut from the second equation of (3.78),
if y > 0, the two signs must be taken to be the same, apdif0 they must be taken to be opposite.
We can fix the sign of: so that the square root is positive on the real axis. Thissgeat is called
onebranchof the functionzz. If we decide that? is negative on the real axis we get the other branch.
This, slightly complicated, situation can be simplified asping to polar coordinates. We have

=
NI

22 = r2e2i? (3.82)
Since, however we defirg we cannot fix it globally to better than the addition of aregral multiple of
27, we cannot expect that to be globally better defined than up to a factordf. If we adopt what we

called earlier therincipal branchfor ¢

—rT<f<mw (3.83)
we have p
s s
—— < =< = 3.84
2 = 2 = 2 ( )

This 23 = 7 just above the negative real axis and = —i just below the real axis. In order to obtain
a domainD in which 23 is single valued and holomorphic veait or slit the complex plane along the
negative real axigz <,0). That is, we omit the negative real axis, and choose the doMai= C\ (z <
0,0). The negative real axis is referred to abranch cut, and it includes, and ends on, the oridin
which is referred to as laranch point A formal definition will be given shortly.

The function so-defined maps the cuplane onto the right hand-plane, i.e ontax = Rw > 0.
This is equivalent to using the upper sign foin (3.81) wheny is positive and the lower sign whenis
negative.

If we had chosen the lower sign in (3.81) wheis positive and the upper sign whens negative,
we should have obtained a different branch of the functiowhich maps the cut-plane to the left hand
w-plane,i.e. tax = Rw < 0.

Example log z. We introduce polars:
log z = log r + 6. (3.85)

There are clearly infinitely many possible branches of tigatfithm function. If we cut the-plane along
the negative real axis and take the principal branctffae get a map oD’ = C \ (z < 0,0) into the
strip (—oo < u < 00, =1 < 0 < 7). The other branches map, (x < 0,0) into parallel strips displaced
vertically by integer multiples or.

%i.e. itis the non-positive real axis

13



Example z“. We introduce polars '

2% = roeted (3.86)
and cut as before. I is rationala = p/q with p and g relatively prime, there will be; branches.
Otherwise there will be infinitely many.

Example

01+ 0,

NI

(22— 1)2 = (ryry)

with 2 — 1 = e, 2 + 1 = ryeif2,
Consider what happens if we move in the complex plane arowniple closed curve. Now

.0 . . .
e ¢i2 is 2-valued if we encircle = 1.

(3.87)

V)

&S
SIS

e ¢'7 is 1-valued if we encircle = 1

Q)

el
Nk

e ¢'% is 1-valued if we encircle = —1

Q)

.0 . . .
e ¢ 7 is 2-valued if we encircle = —1

+0o

o /"3 is single valued if we encircle both= 1 andz = —1 or neither.

We have at least two options for cutting. One is to cut frome= —1 to z = +1 along the real axis.
The other is to introduce two cuts from, one fremo to —1 along the real axis, and the other frdno
+oo along the real axis. In both cases there at two branch pdints-a+1. Let's take the first option,
slitting the plane from-1 to +1 along the real axis. If we than take the principal branches.fandd,.
(2% — 1)% will then be real and positive on the positive real axis arad aad negative on the negative real
axis. Just above the cut we hawé — 1)z = i,/ and just below the cu> — 1)z = —i,/ri75. The
function (22 — 1)% so defined has a discontinuity f, /r;7,across the cut (moving downwards).

To give a definition of a branch point we need to introduce tbtgon of a simply connected domain

Definition ~ An open domainD C C is said to besimply connected every continuous closed curve
~ C D can be continuously shrunk to a point, through a family okesrying entirely withinD.

Definition ~ We sayz is not a branch point of a functiofi z) if there exists a simply connected domain
D containingz, such that its restrictiorf,, = f(v(t)) to any closed curve(t) C D is single valued.
Otherwise we say that, is a branch point.

Definition  We say thaff(z) has a branch point at infinity if it is not single valued aroaticufficiently
large curves.

Example (22 — 1)z does not have a branch point at infinity
Example (z* — 1)2 has three branch points at= z = ¢'3 andz = ¢~*% . It also has a branch point
at infinity.

While there is no ambiguity in locating branch points, thereome arbitrariness in selecting a set of

branch cuts as we have seen. The criterion for a successfigecis that once they have been removed,
the resultant function is single valued, at the expense iobdiscontinuous across the cuts.

Example The International Date Line
To understand this, and to clarify what is happening at ityfittiis convenient to consider
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3.8 Stereographic Projection and the Riemann Sphere

Consider a unit spherg? in 3-dimensional Euclidean space given say by
XX=attastai=1, (3.88)

with its south pole (SP) (i.ex = (0,0, —1) ) resting on (i.e. tangent to ) the plafegiven byz; = —1.
We may map all points € S? except the north pole (NP) (i.& = (0,0, +1) ). onto the plane by contin-
uing the straight line from the north pole through the paiminto the planél. If ¢ is azimuth (i.e. angle
of rotation about the diameter joining the NP and SP) ard-latitude (i,e. the angle measured from the
NP) then with a suitable choice of origin and scale the imdge & (sin 3 cos ¢, sin 3sin ¢, cos 3)  on
the plandl is given by

2 =1x+iy = e COt(g) ) (3.89)

Thus¢ = # modulo integer multiples dir.
Definition  The mapS? \ NP — C is calledstereographic projection from the north pole

Intuitively the NP pole maps to infinity in the complex plan@nd we can think of the sphere as the
disjoint union of the planél and a point at infinitypo

S% =TI oo (3.90)

We could just as well have considered the plihgiven~ byz; = +1 tangent to the north pole.
Stereographic projection from the south pole také§ SP to I1. Thus

S?2 =TI Uco (3.91)
If we introduce a complex coordinateon II then for a suitable choice of origin and scale we have

Ep (3.92)

z

Now considefI x IT with coordinatesz, 7). If we callT' the mapc \ 0 — € \ 0 given by (3.92) we see
that

S?=cxc/T (3.93)
Note that
SP = z2=0=2=00, (3.94)
SP = 2=0= z=0. (3.95)
Definition

The resultant completion of the complex numbers is callediemann Sphere

3In many bookg ¢, #) are used for azimuth and co-latitude. Siide standard for plane polars, we don’t have that option.

15



Example Theantipodal map

»— =9, f—m—f (3.96)

or
SR (3.97)
z
is anti-holomorphic, orientation reversing, and fixed pdiee.
The long and short of this discussion is that to check for ¢thigoints at infinity we use (3.92) to

introduce the coordinateand examine the poirit= 0

Example

(1— 33 (3.98)

There is a branch point &= 0, i.e. at infinity. as well as at = 1 andz = ¢*'% ,i.e. 7 = 1 and
- 27
Z=e""s

Branch cuts can be taken betwees: 1 andz = oo along the real axis and between- et

Example

(3.99)

This has a branch point at both the north and the south poleaweun a branch cut along a meridian
from pole to pole.

Example
fo (21 =2 - 2 (3.100)
z
Sincef — % at infinity (i.e for smallz) , f has a singularity at infinity (in fact a pole ) but itiota

branch point.

Example The International Dateline
If 2 = ¢ cot(g) we letd = 0 be the Greenwich meridian, then local time is given by

Slogz = Rw,w = —logz (3.101)

and increase as we go eastward and decreases as we go weskward are branch points at the
north and south pole and by international convention a lbrantis drawn connecting the two. A glance
at an atlas will reveal that although this is a perfectly eztgble branch cut it is not, for very practical
reasons, always along the meridian= 6 = 180°. “.

Definition
The function
w = f(z) = —ilog z (3.102)

mappingS® \ NP LU SP to the infinite strip—7u < 7, —co < v < oo is calledMercator’s projection

4see http://lwww.phys.uu.nl/”vgent/idl/idl.htm for desai
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3.9 Riemann Surfaces

Rather than deal with a function with many brancligs) in other words a collection of function(z),
1=1,2,...,ndefined om identical domainsl/; , whose boundariesU; consist of a set of branch cuts,

it is sometimes more convenient to think of a single functiefined on a single domai = LU!=1U;
where the overline indicates that the domdihare glued together across their common boundary branch
cuts.

This can give rise to a topologically complicated objecpezsally if one adds in the points at infinity.
The resultant construction is called arsheeted Riemann surfgdée domains or cut planés being
thesheets A detailed discussion is beyond the scope of this course.

One way to think of a Riemann surface, is to consider the subse

(z,w) = (2, f(2)) (3.103)

of ¢ x ¢ = rR* asz varies over the complex plane or if we add the point at infioigr the Riemann
sphere. One obtains in this way a two real dimensional seidamanifold in four-dimensional Euclidean
space. It is a pleasing exercise (but far beyond the scopgesoédurse) to show that this surface is like a
soap film: it extremizes surface area.

3.10 Conformal Mappings

A general linear map? — R?

— w =w

( a,3,7,0 ER (3.104)
L
2

(+iy—iB+9)z + ;(a+i’y+iﬁ—5)§ (3.105)
is not holomorphic. For exampleif = v = 0, we get a diagonal matrix which expands theoordinate
by a factora and they coordinate by a factar. If « # § this will change the angles that lines through the
origin make with the axes and with each other. Circles arerta to ellipses. Squares with sides parallel
to the axes are taken into rectangles with sides paralletaxes, but a rectangle or even a square whose
sides are not parallel to the axes will be taken to a generallpkepiped. Such transformations are called
shears By contrast a linear holomorphic map is just the compaositba rotation and a dilatation and
thus preserves angles, and takes circles to circles, atahgdes to rectangles.

For a general map we need to consider infinitesimal rectangtebetter the angles between curves.

Definition  The tangent vectdf' of a curvez = ~(t) in the z-plane is

dy dz dr dy
T T T (3.106)

Definition  The length of the tangent vector is

d
IT| = /32 + 9% = }d—z (3.107)
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Definition

Given two such curves; and~, , the anglex between them is given by
_hL|

Ty |Th|

Now consider a general holomorphic map from an open set in-fflane into an open set in the the
w -plane

i

(3.108)

w= f(z2) (3.109)

It will map a curvez = 7(t) in the z-plane to a curvev = 5(t) = f(v(t)) in thew-plane. The tangent

vector is oo g d J
o _dw _dfdz_df

Cdt dt dzdt dz (3.110)
The angle between the two curvegt) andy,(t) is given by
o BBl _ o (3.111)
Ty | T}

Definition

A mapping from an open subset ®f to an open subset af? which preserves the angles between
curves is is calledonformal

From (3.110) it follows that the effect of an analytic magpion a infinitesimal vector at in the
z-plane is to take it to an infinitesimal vectorat = f(z) in the w- plane which ismagnifiedby an
amount| f’| and rotated through an angieg f’. Thus an infinitesimal rectangle of sidés anddy is
taken into and infinitesimal rectangle of sidés and dv which is both magnified and rotated, but it
remains a rectangle. If we think div as the infinitesimal displacement resulting from an infsiitel
displacemeniz we have

dw = f'(z)dz (3.112)

If the map were not conformal, then an infinitesimal rectangbuld be mapped into a infinitesimal
parallelepiped, that is it would suffershear

3.11 Theline element

Pythagoras'’s theorem tells us that the the infinitesimahdizeds ° betweenz, y) and(x + dx,y + dy)
is given by
ds? = da® + dy?® = dzdz (3.113)

In general curvilinear coordinatés, v) say we have

d*s = E(u,v)du® + 2F (u,v)dvdu + G(u, v)dv? (3.114)

5One can of course easily avoid the use of the language oftiedimals if one wishes, but it simplifies notation consider-
ably,is intuitively clear, and universally used
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for some functions”, F', G which are often assembled into a symmetric matrix
(3.115)

and referred to as a “metric tensor ”. The expression (3.El#ferred to ashe line elementThe angle
« between the coordinate lines is given by

cosa =

F
_ 3.116
IolE ( )
The expression (3.114) also holds for the infinitesimalasise on a curved surface. It can be used not
only to work out distances but angles and areas as well.
In the case of a holomorphic mapping= f(z) we have

dwdw = | f'(2)|*dzdz (3.117)
thus all infinitesimal lengths in-plane are scaled by a factgf'| as we saw above.

Example Elliptical coordinates in the planErom(3.58)w = f(z) = cosh™' 2
1

ds* = dzdz = | sinh w| *2dwdw = 5
cosh” u — cos? v

(du2 + va) ) (3.118)

Example The Spher&he line element for the standard unit sph&te x(3, ¢) = (sin 3 cos ¢, sin 3 sin ¢, cos 3
is given by
ds* = dx.dx = df3* + sin® Bd¢* . (3.119)

Note that the coordinate lines = constant, the meridiansand the coordinate lines = constant the
circles of latitudeare orthogonal.
Using the formula for stereographic projection we have

4dzdz

_ 2 : .2 2

From this one deduces

Proposition  Stereographic projection is conformal
Moreover the composition of angle preserving maps is angegoving, and we deduce from (3.102)
that

Proposition  Mercator’s projection is conformal
In Mercator'sw-plane, a straight line makes a constant angle with the thiegklinesu = constant
But these are are the images of the meridians.

Definition A rhumb lineor loxodromeon the sphere is a curve making a constant angle with the
meridians.
Thus
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Proposition Rhumb lines map to straight lines under Mercator’s propecti

Definition A circle on the sphere is the intersection of the sphere wittheae. If the plane passes
through the centre is is callagteat circle otherwise amall circle One has the following

Proposition  Stereographic projection maps circles to circles.
Recall that if3, ¢ are polar coordinates, the unit sphere in Euclidean spagiedas

i+l tai=1, (3.121)
T ixy = sin Be’? T3 = cos 3. (3.122)

A plane with unit normah is given by
1M1 + Tang + N3x3 = p), (3.123)

and will intersect the sphere providgti < 1. If n = n; + iny, then simple calculation starting from the
formula for stereographic projection (3.89) converts 23)ito the form
2 1 —p?

alrt (3.124)

n

ny —p

’z—i—

Now (3.124) is the formula for a circle of centre_"— and radius—m. If n3 = p the plane (3.123)
contains NP and and the projection is the straight line

an+zn=2p. (3.125)

It follows that if two circles, either of which may great or alfj intersect on the sphere with a cer-
tain angle, their stereographic projections will be ciscte straight lines which intersect at the same
angle. These fact were well known to Hipparchus who estaédishen using classical Euclidean geom-
etry. They are at the basis of all subsequent applicatiosgeoéographic to astronomy, crystallography,
geology etc, etc.

3.12 The Moebius Map

This is a 1-1 map of the Riemann sphere to itself given by

, ad —bc # 0. (3.126)

Note thata, b, ¢, d and Aa, \b, Ac, \d A # 0 give the same Moebius transformation and so one often
imposes the condition
ad —bc=1. (3.127)

This doesn't fixa, b, ¢, d completely because, b, ¢, d and —a, —b, —c, —d both satisfy (3.127) but give
the the same Moebius transformation. However the condi8di?27) does show that there is a six real or
three complex parameter’s worth of Moebius transformatids a consequence we have
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Proposition  Any three distinct assigned pointsg, z3, z3 may be mapped to any other three disinct
assigned points, wsy, w3 by a Moebius transformatiorsince Moebius transformations form a group it
is sufficient to takev;, ws, w3 = 1,0, 0o by

w= =22 = 2) (3.128)

(2 —23)(22 — 21)

If wy,wq, w3 # 1,0, 00 we then compose with the inverse

o ZWs(wa — ws) + wn(ws — ws) (3.129)

2(wy — wq) + (w3 — wy)

which taked), 1, oo to wy, wo, w3

Example Examples of Moebius transformations

w = €% a €ER arotation (3.130)
w = kz keR adilation (3.131)
w = z+a kec a translation (3.132)
w = az+b a,becC, a general affine map (3.133)
w = 1/z an inversion (3.134)
Now from (3.126)
a bec—ad 1
E— 0 3.135
YT i a cz+d’ c7 ( )
let

fi(z) = cz+d ashear — free affine map (3.136)

1
fo(2) = - an inversion (3.137)

z

bc — ad
f3(z) = % + = . “, ashear — free affine map (3.138)
(3.139)
Hence h
az

w=f3(flfi(2) = fso f20 fils) = ——- (3.140)

Thus we have the following extremely useful

Proposition  Any Moebius transformation can be obtained by composingdaera shear -free affine
map, an inversion and another shear free affine map.

Now shear-free affine maps take circles to circles. What tiovarsions? A general circle is of the
form

A +y)+Br+Cy+D = 0, ABCDeR ie (3.141)
Ar® +r(Bcosf + Csind)+D = 0. (3.142)
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If we introduce polar coordinates in theplanew = pe'® = % this becomes

A+ p(Bcosa — Csina) + Dp* = 0, i.e. (3.143)
A+ (Bu—Cv)+ D@ +v*) = 0. (3.144)
Therefore we have, taking into account degenerate cages, th
Proposition  Moebius transformations map circles and straight linesitoles and straight lines.

Example i) w = 2 mapsRz > 0to |w| < 1, (ii) inversion mapstz > j to|w — 1| < 1.

3.13 *Moebius transformations as Lorentz transformationg

What was not known to Hipparchus, but which plays a big rol@ikodern Physics is that the group of
Moebius transformations and Lorentz transformationstaeame thing. To see why, considét (2, C)
acting onc?:
Zl a b Zl
— (3.145)
Z2 c d ZQ

If z = g—; this reproduces a Moebius transformation

az+b
. 3.146
A cz+d ( )
iy . a bl .
The condition (3.127) implies that the matisk= liesinSL(2,C), i.e. det S = 1. However
c d

S and—S give the same Moebius transformation and so the group of Medlansformations may be
identified with the grougPSL(2,C) = SL(2,C)/ + 1, where+1 is the centre o L(2, C).

An event in Minkowski spacetime may be assigned coordinatgszs, x3 and the Lorentz group is
by definition the subgroup a@¥ (4, R) preserving the quadratic form

t*— a2} + a5+ a3, (3.147)
Associate to every such event the Hermitian malfix= X' given by

t+ T3 T+ i.TQ
X = . (3.148)

r1 — i.TQ t— T3
and consider the action 6fL(2, C)
X - X' =5Xx57 (3.149)

It preserves the Hermiticity conditiof’ = X'’ and so takes an event in Minkowski spacetime to an
event in Minkowski spacetime. Moreover it preserves themheinant

det X = det X’ D - G B N Ly (3.150)
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Thus every element of L(2, C) induces a Lorentz transformation. It follows from (3.148attS and
—S induce the same Lorentz transformation. A more elaboragenaent, which we will not give here,
shows that every Lorentz transformation which preservasepnd time orientation may be obtained by
a unigue Moebius transformation.

Let us return to (3.145) which we write as

7 S7. (3.151)

V2 cos ge%‘i’
7 — | (3.152)
V2 sin ge_%(b

thenz = 7,/7Z, = cot gew which is the formula (3.89) for stereographic projectiorm discover the
sphere, note that = ZZT is a Hermitian matrix with vanishing determinant in fact

1+cosB3 sinBe
X = .= (t, 21,79, x3) = (1,sin Fcos ¢, sin Fsin ¢, cos ). (3.153)
sin Be™* 1 — cosf3

Thus thecelestial spherés a constant time slice of the future light cone of the origimMinkowski
spacetime. Suppose you see three stars coming towards ftaeéngiven directions. By an appropriate
Lorentz transformation, you can always pass to a frame efeate in which one is due north, one is due
south and one is due east.

3.14 Use of Conformal mappings to solve Laplace’s equation

Suppose we wish to find a real valued solutibof the Dirichlet problemin some complicated domain

D C Cinthez-plane

0*W

020z
We try to find a holomorphic map = f(z) which takes taking> to a simpler domaiD = f(D)in

thew-plane, in which we can easily find a real valued solutioof the Dirichlet problemwith the same

boundary values at corresponding points of the boundary

V20U =4

0, inD, Ulyp=10, (3.154)

0*®

2p =14 =
v Owow

0, in f(D), Plorpy = Yo (3.155)

Then we know that
d =Rg(w) (3.156)

for some holomorphic functiop(w) in D = f(D) . Nowh = g o f = g(f(z) is a holomorhic function
in D. and thus
U =R h(z) (3.157)

is a certainly harmonic i and by (3.155) it also satisfies the boundary condition @.050D .
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Example
LetD :y > 0,2y <1,z >y, 22 —y?> < 1 ThatisD is bounded by the real axis,on whi¢h= 0,
the line through the origin at5°, on which¥ = 0, and the rectangular hyperbolg = 1 on which
U = 1 and the rectangular hyperbold — 3?> = 1 on which¥ = 0. The mapw = 2? takesD to the
rectangle) < u < 1 and0 < v < 1. One hasb = 0, on three sides anél(«, 1) = 1 on the top.
Separation of variables and Fourier’s theorem gives

O(u,v) = Z b, sin(nmv) sinh(nmru) (3.158)

with 4
b, =0 neven, b, = —— nodd (3.159)

nm sinh(nmu)
Thus
O(u,v) = m(z M) (3.160)
T 4 n sinh(nT) '
4i cos(2?)

v = — 161
(z.9) %(r;dd nm sinh(mr)) (3.161)

4 Cauchy’s Theorem and Contour Integrals

If f(z) is complex valued function in some domaihwithout singularities or branch points andt) a
smooth curve lying inD, so thatz(t) = (), with initial point z; = ~(¢;) and final point:y = ~(ty) then
we have the

Definition
/y f()de = /t ! f(z(t))%dt (4.1)

_ /t ’tf (u + iv)(dz + idy) (4.2)

_ /t Y ude — ody) + i /t 7 o+ udy) (4.3)

In this context the curve(t¢) along which one integrates is often referred as@our, even though
it may not arise as a contour or level set of any particulakrvalued function in the problem. This is
because, strictly speaking, one should distinguish betvaegrrveand the correspondingath A curve
is usually defined to include its parametrization. A curvthiss a map fronk 5 ¢ — R*> = C 3 z(t) =
x(t) + iy(y) or if it is closed curve,S' 5 t — R* = C > x + iy Changing the parameter changes
the curve and the spe€d at which it is executed but the path or contour, i.e the paghsnstituting
image of the map is unchanged. Since the integral (4.3) dispemly on the path and not any particular
parametrization, it is called @ntour integral We refer to aclosed contouand asimple closed contour
if there is some parametrization for which is is closed or@arand closed. Similarly we can chose an
orientation for a contour by picking a parametrizatiofor it and then specifying that “forward "is in
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the direction of increasing In what follows, | shall, not distinguish very carefully theeen curve and
contour unless confusion may arise.
Now suppose that is any simple closed lying i then we have

Cauchy’s Theoremstates that iff (z) is holomorphic inD then

%f(z) dz=0. 4.4)
Y
To prove this we applBtokes’s Theoreto the sub-domai® c D with boundarydD = ~.
We have
%f(z) dz = %A.dx Jrij{B.dx (4.5)
Y Y
with

A = (u,—v,0), B = (u,v,0). (4.6)

The CR equations (3.25) imply that
curlA =0 =curl B. 4.7)

There is a converse result, which we won’t prove:

Morera’s Theorem
if fis continuous inD and (4.4) holds/~ € D, thenf(z) is holomorphic inD

4.1 Some consequences of Cauchy’s Theorem

Cor.l Path independence
If f(z)is holomorphicinD , andD is simply connected, then

/yf(z) dz:L/f(z) dz (4.8)

for all curvesy and+’ lying in D which join the same initial and final point.

Cor.2 Deformation Property
Suppose that and~’ are any two closed curves which can be continuously defointedne another
while lying entirely withinD, then

7{]”(2) dz = ﬁ/f(z) dz (4.9)

Note thatD need not necessarily be simply connected. One sometimg$isdyhe two closed curves
~ and~’ arehomotopic withinD.

Cor.3 Anti-derivation property
Supposef(z) is analytic in some simply connected domainthen there exists an analytic function
F(z), unique up to an integration constant such that for all cetve D connecting; to 2y

/ T = P(e) — F(=). (4.10)

i
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This follows easily from Stokes’s theorem and the CR equatioF'(z) is defined only up to an
integration constant since if

F(z) = / 1) de, (4.11)

wherez, is some arbitrarily chosen point i then (4.10) will hold for all curves it connectingz, to
Z.

4.2 Taylor Series and singularities

One has the following, result which we shall not prove

Taylor's Theorem
If f(2)is complex differentiable in a disb(z, R) then uniformly inD(zy, R)

f(2) :ian(z—zo)”, V]z— 2| <R (4.12)
n=0

In other words the series is uniformly and absolutely cogeet within D(z,, R) and may be differenti-
ated or integrated term by term. Of course

df

4.13
T (4.13)

1
Y 4 ()] _
tn = n!f (20) = n!

zZ=20

Thusholomorphicityis equivalent tcanalyticityin the sense of having a convergent Taylor series (
which is sometimes taken as the definition of analytic). Meeg if f(z) is once complex differentiable
it is analytic and hence complex differentiable arbitrargny times. For that reason we have not been
very careful about the existence of continuous second aeres when discussing the harmonicity of
holomorphic functions.

It is clear from Taylor's Theorem, that, is not a branch point or a singular point of the function
f(z). Given a holomorphic function in a digo(z,, R) one may examine the convergence of (4.12) if
one extends the radius to a larger vakie> R . One finds that the series remains convergent as long as
D(zp, R) contains no singularities. In other words, the series dieeat the singularity nearest4g

4.3 Taylor-Laurent Expansions

Definition
Theopen annulusi(zy, a, b) centred orx, is

A(zp,a,b) = {z|a < |z — 2| < b}. (4.14)

Now suppose thaf(z) is single valued and analytic in an annuldi&:, a, b), then

Proposition There exists a unique expansion
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[e.e]

f(z) = ch(z—zo)" (4.15)

— 00

> EET _b”;o)m (4.16)

m=1

= Z am(z — Zo)m +
m=0

Again, we shall not prove this but note that the convergeacich that one may differentiate and
integrate term by term

Example
f(z):% , 2 = 2, We setu = z — 1 so thatz = u + 1 and

2u 2 2 3 4
o, e (2u)*  (2u)®  (2u)
f—e? = $(1+2u+ T +...) (4.17)
1 2 2 4 2u
= =+ =+ F -+ =+ 4.1
e(u3+u2+u+3+3+ ) (4.18)
1 2 2 4 2z—1)
_ .2 S .. 4.19
e((z—1)3+(z—1)2+(z—1)+3+ 7 t) (4.19)
The first three terms are the new ones and we seeutimaf4.16) only goes down ta = —3.
Example
Laurent Series and Separation of Variables of Laplacesaggn in polar coordinates
10, 0¢ 1 0%¢
2p=-—(r——)+ —=—= =0. 4.20
v'e 7’8'/’(7«87‘)+r2892 ( )
Separation of variables leads to
1
o= Z_% Apr" cos(nf + ) + Z:l T—an cos(nf + (,,) + By logr (4.21)

The two series may be expressed in terms of the real parts aylarifLaurent series with, = 0, the
terms involving negative powers of( the Laurent terms) being associated with sources at sawilis.
The terms with positive powers of(the Taylor terms) are associated with sources at infinibe Idg »
term, which is associated with a source at the origin caneattifained from a Taylor-Laurent series
sincelog z is not single valued in any annulus about the origin.

Example f(z) = 1.
For|z| < 1 we have a convergent Taylor series

1 oS
1—2z Zno
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which has a singularity at = 1, on thecircle of convergenceTo obtain a representation convergent
outside this circle, i.e. in the annulug0, 1, co) we use the fact that

1 1 1

= —= 4.23
1—=z z1— % ( )
1 1
= —— ) — (4.24)
z 2"
n=0
n=-—1
= Z —2" (4.25)
Example f(z) = z—. Using the Taylor series fofin(z) we can obtain a seres of the form
1 1 1
, = - - (4.26)
sin 2 21—F+1—20+___
1z 72
= -4+ -4+ —+... 4.27
z * 6 * 360 * (4.27)

1

sin z

The functiong(z) =

— % is differentiable at the origin and the series

1 1z 728
= —— =4 —+... 4.28
9(2) sinz 2z 6 + 360 + ( )
converges in the dis©(0, 7). To cancel the singularities at= +7 coming from the zeros ofin = at

2z = 4+ we consider

111 1
- = +

h(z) =

(4.29)

smz 2z z—m z+4T
which has a Taylor series in the annuli®), 7, 27). Now using the Taylor-Laurent series obtained in the
previous example one deduce that in the anndl(fs 7, 27) we have the Taylor-Laurent series

1 z 7228 2 z., 1 2 T,
a6t ) TR L T 20 (4.30)

nodd neven

4.4 Classification of singularities

Definition ~ We say thatf(z has ansolated singularityat z = z, if the inner radius: of the annulus
in the Taylor-Laurent annulus series (4.16), can be madg&auity small. That is (4.16) holds holds in
A(z,0,b) for someb > 0.

Definition  If further the the coefficients, vanish forn < —N we say thaff(z) has gpole of orderN
atz = z.

Definition If N = 1 we say thatf(z) has asimple poleatz = z.

Definition If N = co we say thatf(z) has aressential singularitat z = 2.

Example The basic example of an essential singularity(is) = e:.

Example If f(z) has a branch point at= z,, thenf(z) has anon-isolatedsingularity atz = z.
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4.5 Cauchy’s Integral Formula
Supposef(z) has a Taylor-Laurent series (4.16) about z,, then

Cn = =S % L dz (4.31)

2ri ), (2 — zp)" !

For all simple closed curvegin the annulusA(zo, a, b)
This follows immediately from the identity

j{(z — 20)™ Ty = 270 pm4n0 (4.32)
Y

which in turns follows by setting — 2y = pe’®, so thatdz = dpe'® + pei®ide, integrating around a
circle p = constant lying inside the annulusl(zy, a, b). The answer then follows for other curves by the
Deformation Property. Alternatively i, + n # 0 we have

— )™ e = ¢ d(E—22) = 0. 4.33
fle—artis= faC22) (4.33)
If m +n = 0 we must integrate
d
j{—z = fd(log z) = [logz]| = 2mi. (4.34)
Y z Y
Example The Bernoulli number$s,, arise in many combinatorial problems. They are defined by
z 1 1 1
p— ]_:_ _2__4_... 4'35
e — 1 T RT T’ (4.35)
B
- Z P (4.36)
n!
n=0
One has | .
By= (4.37)

- 2mi J, 2 (er — 1)

Definition  The coefficientc_; given a special name. It is called thesidue of the functiorf(z) at
Z = 20

Proposition  The residue; of of f(z) is given by
1
1= 5 %Yf(z) dz (4.38)
Read the other way: to evaluate an integral it suffices tauewala residue.
Cauchy’s Integral Formula If f(z) is analytic in a disd@(zy, R) = A(z,,0, R) Ll 2y aboutz,, then
1 IR

2mi ),z — 2o

f(20) dz (4.39)
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Example

The left hand side of the Cauchy Integral Formula (4.39) ismamex valued solution of Laplace’s
equation (3.66) inside the curve The left hand side gives it in terms of its boundary values/pim
which Z_—lzo plays the role of a type of Green’s function.

Example Gauss’s mean value theorem for harmonic functions.
Take~ = (' to be a circle of radiug centred orz = 2,. Then

P = § rleanspe) 5 (4.40)

The real part of of this expression
: do
u(zo,y0) = ¢ u(xzo + pcose,yo + p+ psing) or (4.41)
C

gives the value of the harmonic functiaitz,, yo) = Rf(z0) at a pointp in terms of its average value
value around a circle enclosing This is a general property of harmonic functions which migp de
proved using separation of variables (4.21).

Gauss’ mean value theorem evidently implies that two harefumctions with identical boundary
values are themselves identical.

4.6 Consequences of Cauchy’s formula

Cor.1 Cauchy’s Inequality
Suppose thatf(z)|c < M on some circle of radiug aboutz = 2, then

F(z0) < ”/‘f . (4.42)
We have

) = 2 fE)

f"(z0) = omi PGy dz (4.43)
2w
— g [ et e do (4.44)
Using| [ h(z)dd| < [ |h(z)|d# we obtain

el < / Flao + pet®)| 52 (4.45)
< p_" ; 23: (4.46)
: ”/‘){{4 (4.47)

Cor.2 Liouville’s Theorem States that iff (z) is entire and boundedf(z)| < M Vz € C then f(z) is
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constant.
From the previous result

F(z0)] < %Vp -0 (4.48)

and hence’ = 0 for all 2 .
As a special case we deduce that a bounded harmonic funetfored in all ofR? must be constant.
In fact this last result and Gauss’s Mean Value theorem haltidrmonic functions im™ for all n > 2.

Cor.3 The fundamental Theorem of Algebra
Every polynomialP(z) of degreen at at least 1 has at least one root. (and henamots).

If P(2) is never zero thertfi(z) = 5 is analytic sincé ;) = —]’;('2;. Now | 5| is bounded as

|z| — oo. Thus by LiouvilleP(z) is constant which is a contradiction.

5 Residue Calculus

The basic result is

Proposition
Suppose thaf(z) is analytic inside a simple closed curyavith the exception of a finite number
of isolated singularities = z; at which the residue Bes|f, z;]. then

k=n
/f(z) dz = 27riz Res|[f, k] (5.1)
v k=1

To prove this one deforms into n small contoursy, such thaty, encloses only thé’th residue to
together withk non-intersecting “railway contours "connectingand-.

Example Counting zeros of Polynomials
SupposeP(z) = ag + a1z + ...a,2", a, # 0 is a polynomial of degree. Thenf(z) = ];—
analytic away from the zeros @t(z). Near an isolated simple root at= z;

P(z) = (z = z)gx(2) (5.2)

whereg,(z) is analytic andy,(zx) # 0 # ¢'(z)) . (In factg,(z) is a a polynomial of degreg: — 1))
Thus

PG ) 4 (= 2)dh(2)
PR T (i wml) (5:3)
L, ) (5.4)

2=z gi(2)

has residué. Near a root of multiplicityn, we setP(z) = (z — z)" hy(z) with h(z) # 0 and find that

= o (5.5)




The residue is therefoﬂées[%, 2] = nx We integrate’;—,/ around a large circle at infinity and use the fact
that at largez
P'(z)
P(z)

n= an (5.7)

In other words the sum of the zeros counted with respect taiphoity equals the degree of the polyno-
mial.

~
~

w3

(5.6)

Evaluating the integral we get

Definition A holomorphic function is said to bmeromorphidf its only singularities are isolated poles.
In fact such a function may be expressed as the ratio of twoeenictions.
Supposef(z) is has a pole of ordern,; atz = z; ,then near = z; we have

1
f= mgz(z) (5.8)
Then P ()
m; gz
o _ + 5.9
AT ©9)
The reSiduaes[f?/, z| = —my.
Now if f(z) is holomorphic insidey except for a finite number of isolated poles and zeros, and
non-vanishing ory then
L f'z) dz = Z ng — Z m; . (5.10)
2me v f(Z) 7eros poles

Example f = e : =1— 2+ 1224 . has a pole of infinite order at the origin with residue
Res[e—%, 0] = —2. Thus for simple contours enclosing the origin

7{ e~ dz = —Ami (5.11)
.

Choosing fory a circle centred of radius and take real and imaginary parts, we obtain

2 2 cos 2 1 0 4
dge " cos(6 + = ) = = (5.12)
0 a a
27r COS 2 ]
/ dp e = sin(f + 51119) = 0. (5.13)
: a

The second integral is trivially zero, but the first is not $wious.

Example Show tha‘g[(f” cos>* 0 dh = 2r 4(2(%2 .
If v is the unit circle, one has

1 1,90 dz
Tl AShi A

2
:/ cos®" 0 df . (5.14)
0
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On the other hand one may use the Binomial theorem to obtaatyl@rfLaurent series about the origin.
and evalute the residue of the simple pole at the origin.

Example Evaluatel = [ h(cos 6, sin 0) df
We substitute?? = z

1 2 a 1 2 «a

N infh — (2 _ 2 A

cos 6 2<a+z>’ sin ¢ Qi(a z) (5.15)
Thus
™ 12 a1 2z a
I = —(—4+ =), — (= — — 5.16
| HGE+ D5 e =D (5.16)
- [ (5:17)
. 1z

whereh(z) = h(3(2 + %), (£ — 2)) and the contou is initially a circle of radiusa centred on the

2/ 21

origin. One now uses Cauchy’s theorem to evaluate the ialteghis requires efficient methods for

5.1 Calculating Residues

Example If f(z) has a simple pole at= z, then

f(z) =c

=y +ceote(z—2)+ ... (5.18)

and

c1 = lim(z — 2) f(2) (5.19)

Z—2z0

Example If f(z) has a pole of ordet atz = z, then

flz) = G C—_Zo)n + e _012—071)”_1 + ... (ZC_—le) +cot+e(z—20)+ ... (5.20)
and
(z—20)"f(2) = cop+cron(z — 2) +...cc1(z— 2)" T4 ... (5.21)
Thus
dn—l
e (z—2,)"f(2) T (n—1) ey (5.22)
Example [ = (CEs ey has a simple pole with residugsat = = 1 and a pole of order 2 at = —1

with residue—1.

Example Evaluate

[ e 1 52
o (1+3cos?6) — Jo iz l+3(z41)2 '
4
- 7{ dz = (5.24)
|z|=1 32’4 + 1022 + 3
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3z* 4+ 102 + 3 has four simple roots, two outside the unit circlezat +iv/3 and two inside the unit

circle z = i%. They give four simple poles and we need the residues of ttex lavo. Both of these
residues are found using the limit method to—b?and hence
2w d9
———— =T. 5.25
/0 (14 3cos?6) : (5-25)

Example f,y 23{1 dz, with (i) v = {|z| = 1} and (ii)y = {|z — 1| = 1}. There are simple poles at the

cube roots of unity = {1,6%, e%} with residues;, “5—, <=— respectively. In case (i) all three lie
inside the unit circle and the integrald& (1 + ¢35 +e73) =0. Incase (i) only: = 1 lies inside the

contour and the integral equaﬂ@'.

5.2 Integrating around branch cuts

Example Findl = § (2*— 1)%dz where we slit the plane along the real axis between the braoicis
atz = +1 an chose the branch of the function which is real and positivéhe real axis to the right of
the branch point at = 1 and the contour is taken to enclose the branch cut.

NI

1 1
(22 —1)2 =2 +... = Res[(zQ—l)%,O] =-5 = I =—mi. (5.26)

2z
We can check this by shrinking the contour onto the cut anihgaikto account the fact that? — 1)%
suffers a discontinuity across the cut . Temporarily igngrihe contribution from the branch points at
z = £1 we have in the limit

1 +1 +1
1= / V1 —x2dr — V1 —x2dr=—2i V1—2?2de=—irm (5.27)
+1 1 1

The contribution from branch points can be estimated by idenisig the contribution from a sector
of a small semi-circle of radiuscentred ont-1. This is

5
I = / cie (22 —1)2 df (5.28)
3

Since|(22 — 1)z| < €2 M for some constant/

[F| <72 M = limI*=0. (5.29)

el0

5.3 Integrals along the real axis or positive real axis

Proposition  Supposef(z) is such that

e (i) f(z) is the real part of functiorf(z) which is meromorphic function in the upper half plane.
That is has a finite number of isolated poles z, € UHP.
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Then

I = +OO f(z)dx = 2mi Z Res[f(z2), zi] (5.30)

- 2z €UHP

Example [ = f°° dz_  The meromorphic functions— 6+1 has six isolated simple poles at =

oo 641" )
e 0 =0,1,2,3,4, 5. of which three lie inthe UHRy, 21, z» € UH P. SinceRes| - e e =
le B one finds thal =
Example [ = 0°° x;ﬁl. Slncex is odd, we cannot extend the integraltec < x < oo and take

half the result However? is invariant under rotations throughR0° . Thus we are inspired to consider
J = f 3 — dz, where~ starts from0 and proceeds along the real axisito= a. We then takey to

proceed1 20° along a circle of radiusa in the UHP;~ then returns t® along the radial Im@ 2“ . The

contour so defined encloses just one simple pote-ate s with residueRes| ' pe) ,ﬂ | = 3 Taklng
the limita T oo we drop the integral over the arc of the circle and obtain
270 2mi * dx e’ dr 2 21
J=—e 3 = 1— | —= [ =—. 5.31
T /0x3+1+/00r3+1 (1—e5) NG (5.31)
5.4 The Keyhole Contour
An alternative method for evaluating the previous integrab consider the integral
log z
= d 5.32
/v S (5.32)

where the functiorog z is taken to have a branch cut along the positive real axis anake the value
log = just above andog = + 277 just below it. The contou starts from0 and along the real axis just
above the cut out te = «. It follows a full circle of radius: returning to the real axis just below the cut.
The contour then returns to zero along the real axis justiote cut. For large, there are three simple
poles insidey atz = {21, 20, 23} = {e7, e™, 3 } with re&dueéM

In the limita T oo

* logx Ologx + 2mi Jlog 2, 2m

K = ————dx = 2mil = 2 = -2 5.33
/ /OO 3+ 1 o Z o 3z} o (\/ﬁ) ( )

Example

0o xmfl
Let
G 5.35
J = .

it (5.35)



where~ is the keyhole contour defined above. The integrand has albjaoint atz = and sim-
(2+1

ple poles at: = +i. with residues—%e e respectively. As long as: < 2, we may ignore the
contribution from the large semi circle at infinity and so

0o ,m—1
J=(1- eQm”)/O 1x+ p der —= I = WCOt(g). (5.36)

5.5 Jordan’'s Lemma

We have seen that ifi > 2 the contour around a semi circle= N, in the upper half plane of radius
cannot be neglected in the limit] coc. However we do have

Jordan’s Lemma

|2f(2)| < Mas|z| — 00 = liTm e f(2)dz =0, m>0 (5.37)
a| oo ma
/ M f(2)dz| < M / e-masint g — 9N / t gmmasing gy (5.38)
Na 0 0
Butfor0 <6 <73
. 20 3 _ ino 3 —9omal ™ _
sinff > — = 2M e-mesmtdg < 2M e Mrd) = M—:y1—e "), (5.39)
T 0 0 ma
whence the result follows.
Example
I = / cos(mz) dr = ﬂ%% ; dz m >0, (5.40)
o 1241 4 (2 =) (z +1)

the contour being a semi-circle of radiwsn the UHP. The pole at = i has residué% and hence

[ =me™. (5.41)
5.6 Using contour integrals to obtain Cauchy’s Principal Vdue
Definition

Given areal functiorf (=) defined on some interval dm_1, xo) U (zo, z41)], thenCauchy’s Principal
Valueof its integral fromz_; to z,; is, if the limit exists,

PV / :1 f(z) dlegilrél ( / j f(z)dx + / " f(z) dx) (5.42)
Example
tde 1 1
L a:_§ = ([_ﬁ]—l + [—@]i) =0. (5.43)
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It is sometimes possible to evaluate Cauchy’s Principal&aising an appropriately chosen contour
integral.

Example
;o / smxdx (5.44)
e T
~ lim ( / ST g+ / Smxdaz) (5.45)
el0 o x € X
— lim (/ ?—d@ur/ e,—d:c) (5.46)
el \J_ T e
Now ,
J = % Cdr= 0, (5.47)
7 z

where the contouy = CDABC = ~; Ly L3 Uy IS
{e<zr<ay=0U{UHP D |z|=a}U{—a<z < —y=0}U{UHP D |z| =¢} (5.48)

ThusC'D = ~; runs along the real axis from = ¢ to x = a and~, runs180° clockwise around the
semi-circle|z| = e;y > 0. Now

B iz C iz D iz A iz
J:/ e—dz+/ e—dz+/ e—dz+/ C d (5.49)
A 7 B % c < D *
and
A ez
lim —dz = 0 (5.50)
aToo D <
B iz D iz —€ iz 00 ix
lim e—dz+/ Cd = / e,—dx+/ ° . (5.51)
aloo A z C z oo T € 1T
Thus . o
i / MY je = —lim gie(cosO+ising) g (5.52)
o T €l0 o
Hence - .
/ il (5.53)
o T

Example Relation Cauchy’s Principal value to the delta functlbia > 0, andf(z) has no singularities
in the intervalla, b] of the real axis we have, if < xy < b

/deu@ — PV bmdazimf(xo). (5.54)

T — xo F L€ o T — o
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Thus considered as distributions, i.e. under the integgal s

1
— = PV +imd(z — xo) , (5.55)
T — Ty — 1€ T — X
1 1
— = PV —imd(x — xo) . (5.56)
X — g+ 1€ T — X
Subtracting ' ) N
2mid(x — xp) = - = « (5.57)

r—1x9—ie x—mxo+ie (r—x0)2+€2

and therefore
€

or—z0)=—lim ——— . 5.58
(.CC .',Uo) T 511101 (.T _ xo)z + €2 ( )
5.7 Contour Integrals used to sum infinite series
The functioncot(rz) is periodic period 1 and near zero,
1 mZ
t =———+4... 5.59
cot(mz) — 3 +..., (5.59)
therefore .
Res|cot(mz),n] = — nez. (5.60)
s
Thus
cot(mz) 1
cot(mz) T
R 0 = —=. 5.62
Hence
cot(mz) T |
f S dz = 2m(—§ 42 ; W) , (5.63)
where the contouy is a square with cornees(N + 3)(1 =+ 1)
Now
L o ih
cot(mz) = c'os(mc) cosh(my) .zsm(m:) sin (my) (5.64)
sin(mz) cosh(my) — i cos(mx) sinh(7y)
is bounded on the contour and therefore
t
im0 g (5.65)
NToo 5 z
Hence
— 1 w2
— = — 5.66
2.0 (5.66)



Definition  TheRiemann zeta functiors defined by

3

=00

()= ni Rs > 1. (5.67)

and so one hag(2) = =

6 Fourier and Laplace Transforms

6.1 The Fourier Transform

Definition  In the space domainThe Fourier Transform, FT, of a real valued functipfx) is, when
the integral exists, given, as a functionvedve numbek = 27” where\ is thewavelengthby

F@) =i = [ ) da (6.1
or in thetime domaira function ofangular frequencw = 27, wherev is thefrequency
FUO) =) = [ e 6.2
From the definition we have the following properties
() Linearity : F(fi+ f2) =F(f)+F(fH) (6.3)
(22) Translation : F(f(r—a)) =e ™F(f(x)) (6.4)
(17i)  FrequencyShift : F(e*ef(x)) = fk—K( (6.5)
(iv) Scaling:  F(f(az)) = % f(g) (6.6)
(v) Derivation : F (%) =ik f(k) (6.7)
(vi) Multiplication : Flzf(x)) = z% : (6.8)
(6.9)
Example A Gaussian
f(x):e_é :>a%+xf:0:>aik:f+%=0:>f:Ae_#. (6.10)
But - . .
f(0) = / e % dr =20 = f= 2rae” T . (6.11)
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6.2 Evaluation of Fourier Transform by Contour Integration and use of Jordan’s
Lemma

Example f(z)= +1t5,0<a€R

1.2+a2 1

fk) = / eike 0T (6.12)

o a? + x?
For k£ < 0 we can close the contour in the UHP using a large semi-cifidie. contribution from the
large semi circle vanishes in the limit by Jordan’s Lemmawardgick up the contribution from the pole
atz = ia. Fork > 0 we close the contour in the lower half plane, LHP We obtain

Fh) = 7 i )= Zemel (6.13)

Note that in this example, whil¢(z) has a meromorphic extension to the comptg¥ane with just
two isolated simple poleg(k) has a whole line of non-isolated singularities on the imagiraxis of the
complexk plane

6.3 The Fourier Inversion Theorem
This states that if (z) € L' N L?, that is

/OO |f(x)|dx < o0 and /OO |f(z)]?dz < o0, (6.14)
then | oo .
o | eF f(k) = leilrél é(f(x +e)+ flz—¢). (6.15)

Example f(z) =0,2 <0, f(z)=¢* 2 >0,a>0.Thus

_ o 1
k) = ~(iketaz) g — : 6.16
foy = [ e " (6.16)
The inverse Fourier Transform FT is
i - eikx 1
2m J_ o a+ ik
The integrand has a single isolated pole in the UHP and Jerdamma applies so if < 0 we complete
in the LHP and obtairf(z) = 0 for z < 0. If z > 0 we complete in the UHP and pick up the residue

contribution givingf (z) = e=* forx > 0. If x = 0,

dk (6.17)

o) 0 o)
% Ooa—iikdk _ % Ooaiikkor% 0 aiikdk (6.18)
a % 0 dk(a—iikJra—lik) (6.19)
_ % 0 dkﬁ (6.20)
1 ks 1
- %[amtan@]o - (6.21)
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as expected.

6.4 The Convolution Theorem

Definition  Theconvolution f x g = g x f of two real valued functiong andg is, when it exists,

Frg(u /f g(u—2)dx = gx f (u).

The Convolution Theorem states that

6.5 Parseval's Theorem

States that - =
JC =y TG
Example We saw before thaf (e 2 ) = A Thus
/: e dv = ‘21; R

Now setu = 7=, v = \/ak and find

2wa J_

—00

as before.

Definition  the function of wave numbeP (k) = |f(k)|? is called thepower spectrunof f(z).
Definition ~ Theauto-correlation functiorof a real valued functiotf (x) is

pz) = / " fa— g+ ) du

2

= / f(z)f(x+ u)du

= f(@)* f(=).
Thus

Fp) = F(f(2)) F(f (=) = F(f(2)) F(f(2)) = |F())]* =

& 2 A2 & 2
/ e du=— eV dv = A=+V2ra,

(6.22)

(6.23)

(6.24)

(6.25)

(6.26)

(6.27)
(6.28)
(6.29)
(6.30)

(6.31)

In other wordghe Fourier transform of the auto correlation function etgithe power spectrum
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6.6 Solving O.D.E.’s

Example A forced damped simple harmonic oscillator

Py | 2dy 2

T T Twoy f(t) 7>0 (6.32)
Taking the FT and solving gives
)
t) = — —_— 6.33
y(t) 27r/_oow§—w2+—2§” (6.33)

If we assumef(t) = d(t) <= f(w) = 1 theny(t) = G(t) will be theimpulse response or Green’s

function with Fourier transform .
~ 1
Gw)= —5——5— (6.34)

2 _ )2 4 2w
Wy — W+ =

The integrand has polesat= £ + | /w3 — & There are three cases

T

1

wi > = under damped (6.35)
1

wp = = critically damped (6.36)
1

w < = over damped (6.37)

In all three cases the poles lie in the UHPt Ik 0 we can complete the contour in the LHP and find
G(t) fort < 0. If t > 0 we can complete the contour in the UHP and obtain a solutitimtwio damped
oscillations, called transients, in the under damped cad@a non-oscillatory transient if it is critical or
over damped. For a generalt) o

j(w) = f(w)G(w) (6.38)

and by the Convolution Theorem implies that

(e 9]

y(t) :G*F:/ G(r)f(t—7)dr. (6.39)

—00

Note that the FT method picks out the so cal@lsal Solution if the force f(¢) vanishes fot < ¢;
then the solution vanishes for< ¢;. For that reason one refers to impulse respd@rge as theCausal
or sometimesRetardedGreen’s function.

6.7 General Linear Systems

The equation
L—>+R—>+ 5 =V(t) (6.40)



governs the charg@(t) and current/ = % flowing through an electricCR circuit with capacitance
C, resistanceR?, inductancel andapplied voltagé/(¢) . Taking a FT gives

1 ~ ~ -
(sz + R+ m)J(W) — V(w) = Z(w)(w), (6.41)
where .
Z(w) =ilw+ R+ m (6.42)

is called thecomplex impedancef the circuit. By combining circuits in series and paradletording to
the rules

(1) series Z3(w) = Z1(w) + Za(w), (6.43)

y 1 1 1
(i) parallel s = St 2] (6.44)

one obtains the impedan¢&w) of a general circuit. It is clear that in general(w) will be arational
functionthat is ratio of two polynomials

P (w)
Py(w)

and hences a meromorphic function.af In generalZ (w) will have a finite number of isolated simple

Z(w) = (6.45)

poles.
Since
1 [ eV (w) oo
_ / Gt — )V (7). (6.47)
with G(w) = 5, so that
1 0 eiwt

the discussion above applies as longias, .., wZ(w) = 0. For Causality and Stability to hold;(w)
must be holomorphic (with no poles) in the LHP. In the caseleftec circuits, this will be true if the
resistances, capacitance’s and inductance’s are all egative.

Example Cauchy’s Integral Formula and Principal Part and Kr amers and Kroenig's Dispersion
Relation

If we takew € R and run thev’ contour~y along the real axis and, passing just below the singularity
atw’ = w we have

—(mi) (RG(w) +iSG(w)) + PV / {RG(w) +iSG(w)) dw' =0. (6.49)

(W —w)
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The first term comes from evaluating the integral around thallssemi-circlgiust below?. Thus

™RG(w) = —PV / h %dw' (6.50)
m3G(w) = PV /_ h (Qj/é_@g)dw', (6.51)

The formulae (6.51) calleramers Kroenigor dispersionrelations and they tell us that there are
fundamental physical limits arising from Causality on theguency characteristics of physical devices.
Thus one might try try to build a perfect filter with zero phatgtortion. This would hav&G (w) = 0.

By Kramers Kroenig it would unfortunately also haié;(w) = 0.

Remark The second line of (6.47) is dnfinite dimensional matrix multiplicationThink of V/(¢) and
I(t) as belonging to an infinite dimensional vector space and(6a$ a linear map between them. Re-
writing it as

1t) = / Gt V() dr,  Glt,r) =Gt —7), (6.52)

and comparing with the finite dimensional analogue
L= GyV; (6.53)

j
we see that
Z — / dr it jerT Gij <~ Gt 7)=G({t—71) (6.54)
Formally, therefore

Gt—7)=56t—71). (6.55)

A general linear systens often thought of as made up Bfack boxe®r input-output devicesach of
which has its own impedance functidf{w) andtransmittance function’ (w) = ﬁ Of courseY (w)

is just what we have calle@(w) above.
Placing boxes in parallel corresponds to addition of trattance functions

Y3(w) = Ya(w) + Yi() (6.56)
which corresponds to addition of matrices
Gs(t,7) = G1(t,7) + Go(t,7) (6.57)

Placing boxes in series corresponds to multiplicationarigmittance functions

Ya(w) = Ya(w)Vi(w) (6.58)
which, by the Convolution Theorem is a form of matrix muligaition
Gs(t,7) = / Go(t, TG (7', 1) dT" . (6.59)

Sthe same LHS arises if one takes the conjost abovébut now there the RHS &riG/(w)
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The structure (6.59) explains why Green’s functions arerofialledpropagators

Example The Harmonic Response Curveis the image in the compleX(w)-plane ass moves along
a of a large semi-circle in the lower half of the compleyplane. The curve pursued hyis (R 5 —a <

w < a)U{|lw| = aSw < 0} for very largea > 0. For a stable opassivesystem, for which , moreover
G(w) never vanishes, the Harmonic Response Curve should havaeewinding numbeb/ (G(~), 0)
about the origin. On other hand of one, if the semi-circlenithe UHP, the winding number about the
origin, W (G(~), 0) counts the number of transients.

Example The damped simple harmonic oscilator

~ 1

Glw) = (6.60)

w —w? + 22
There are two poles in the UHP. Sinédw) = G(—w), the Harmonic Response Curve is reflection
symmetric about the real axis. Asstarts from near-oo it moves from a point near the origin in the
second quadrant in a clockwise direction in the UHP intdénsgc¢he real axis at = 0. It then continues
in a clockwise direction until it reaches a point near zerthmthird quadrant. A moves along a large
semi-circle in the LHP we have .
and thereforerg G/(w) runs through2r a small circle centred on the origin in the anti-clockwisesee
Thus the net winding number is zero.

On the other hand, if the large semi-circle is in the UHP, tlials circle is traversed in the anti-
clockwise sense and the net winding numbe.is

Example The Lorentz-Dirac equation in a simple harmonic potential

@y Ly 2y = 6.62

ﬁ—eﬁ+woy—f(t), e>0. (6.62)
Physically was introduced to describe the motion of an edacin a harmonic potential. The the third
derivative term was designed to accountrediation reaction dampingue to the energy loss by emission
of electromagnetic waves by the accelerating electron. é¥ewThe system is unstable, there are two
poles the UHP and one in the LHP. The two poles in the UHP cpores to damping of the undamped
oscillations of the oscillator without radiation reactias expected. The pole in the LHP gives rise to
runaway solutions.

If we were to solve the equation by the Fourier method, whiasuenes thag(t) is bounded for all

times, the electron would exhilitre-accelerationit starts moving before it is hit!. A causally sensible
solution can be found using the Laplace transform.

6.8 Laplace Transformations

It often happens that one wishes to consider functions wdmiemot inZ! or L2, and hence for which the
FT does not exist. One may then turn to the Laplace Transform
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Definition  In thespace domainThe Laplace Transform or LT of a real valued functjfin) is, for Rs
sufficiently large that the integral exists

CU@H:aﬂ$=i/m6”7@%ﬁ (6.63)

0

In fact if f(¢) is exponentially bounded

If(t)] < MeN' M, N >0, ast — oo (6.64)

~

thenL(f(t)) = f(s) will exist and is analytic fofRs > N.
For notational purposes it is convenient to restrict atbento functions which vanish far < 0. If
f(t) is notin this class, theH (¢) f(¢) where .

Definiton  TheHeaviside Functior{ (¢) = 0. t<0, H(t)=1, t>0.
The Laplace Transform enjoys the following properties

(¢) Linearity :  L(f1 + f2) = L(f1) + L(f1) (6.65)
(17) Translation : LOH(t—t,)f(t—1o)) = e L(f()) = e f(s) (6.66)
(iii) Scaling:  L(f(at)) 2 i) (6.67)
(i) Multiplication :  L(tf(t)) = —% L) = (4)’@‘% — (—1)*f()" (6.68)
(v) Derivation: L <%) = sf(s) — f(0) (6.69)

The derivation property (6.69 (v)) of the LT is rather diffet from that of the FT. The FT of
depends on itsitial value. Similarly

d .
£ () =i - 0 (6.70
d2f 27 /
Lz ) =5 /(s) = sf(0) = f(0) (6.71)
dk_f _ k7 k-1 k=2 g n—1
L( ) = " F(s) = "1 F(0) = 20 = 77 (0) (6.72)
For this reason, the LT is much better suited to solvingahitalue problems than the FT.
Example
s n!
L(t™) :/O the "t dt = vl n €N. (6.73)
More generally we
Definition  Euler's Gamma Function
[(n) = / e "t Rn>0 (6.74)
0




Sothatl’'(n) = (n—1)! n=1,2,....If one integrates by parts one finds that
F'n)=n-1)I'n-1), (6.75)

Also, on substituting = u?, one finds

Ly [T dt [T e _ 33 oy 2 VT (L,
r(3) _/0 v _/0 €2 \V2du = 1 = ) =G-DrG)="-=(G)" (676
In factT'(z) is holomorphic exceptat= —1, —2. .., where it has simple poles. Evidently
o IMNa+1
6.9 Convolution Property
This is
L(fxg) = f(s)g(s) (6.78)

and is proved by integration by parts.
Note that if f(¢) andg(t) both vanish for < 0 then

fxg= / f)g(x —t)dt (6.79)
0
Example Euler’'s complete Beta function
1 3
B(p,q) = / N1 =)t dt = 2/ sin? 10 cos? 10 db , (6.80)
0

0

where we have used the substitutiog cos? . One sets

flz) = H(x)z"",  g(x) = H(x)a"", (6.81)
o)
B(p.a)=fxg| (6.82)
Now
c(@e ) =t ety =R o gy - D)
(6.83)
hence ()T ()
A WP)IL4) prg1
f*g_l—‘p+q)x+ (6.84)
Settingz = 1 gives
z in2r1 2g—1 _ 1 o lf(p)T(q)
/o s Ocos™ ™ 0dl = 2B(p, q) = 27F(p 0 (6.85)
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A special case is the Wallis integral

2
/ 052" 0.d0 = 2B(n + -, 2). (6.86)
. 2’2

Using (6.75) and (6.76) one may check that one gets the sasmesans using the contour integral (5.14).

Example Application of Laplace and Fourier transformations to Padtility Theory
Recall that if a random variabl® has probability distributior(x)dx then the expectation value of
an observablg (x) with respect to that distribution is

:/ﬂ@m@m. (6.87)

If X andY are random variables independently distributed with podiw distributions P, (z)dx and
Py(y)dy, Then

E(f(2)g(y)) = / / f( Py(y) dudy (6.88)
- IEP1 ( ))Epz(g(y)) (689)

If a random variableX has probability distributionP; (x)dx and a random variabl¥ has an inde-
pendent probability distributiof, (y)dy then their joint probability distribution is

P (2)Py(y)dxdy = Pi(x)Py(z — x)dxdz = Pi(z — y) Pa(y)dydz . (6.90)
wherez = = + y. Thus the sun¥ = X + Y has probability distributio(z) where

P(z)dz = /Pl(x)Pg(z —x)dr = /Pl(z —y)P(y)dy. (6.91)
In other wordsP(z) is given by the convolution
P(Z):Pl*PQ(Z):PQ*Pl(Z). (692)
We define
Ep (e*“m) = / P(z)e ™ dx (6.93)
— F(P@)) (6.94)
= P(k). (6.95)
so that the moments are given by .
Bp(z") = ——— 0L (6.96)
PR = (—i)n! dk™ lk=0 '
For two independently distributed random variabe3” the sum has characteristic function
IEP1*]:’2 (e—ik(x—i—y)) = E]:’l (e_ik$)EP2 (e—iky) (697)
= Pi(k) By(k) (6.98)
= PixPy(k). (6.99)
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As anexample suppose thaP (x), P»(z) are Gaussians with mean zero. The FT of a Gaussian is
a Gaussian centred on zero and the product of two such Gasgsia Gaussian centred on zero. It
follows that the sum of two Gaussian random variables is as&an random variables. Writing this out
in formulae allows one to calculate its standard deviatioterms of those of; () and P»(x). If the
Gaussians do not have mean zero one can repeat the exergéhesshift property of the FT.

In the above we assumed the sample space tothe entire real line. However we could consider it
to be the positive real axis, . Then the moment generating function is the Laplace transfo

Ep(e™*) = /000 P(z)e " dx (6.100)

= L(P(z)) = P(s). (6.101)

6.10 Inverse Laplace Transform and Bromwich contour

Proposition  If f(s) is holomorphic fofiks > ¢ > 0, then

1 c+100

Flt) = — / e f(s)ds. (6.102)

2m +i00

Proof

If ¢ < 0 we drag the so-calleBromwich contoufits = ¢; —oco < v = Js < oo to the right. In the
limit Rs — oo e f(s) — 0and sof(t) =0,t < 0.

Fort > 0, settings = v + v, u,v € R,

£t = % h et“ei”< /0 et f(t’)dt’) idv (6.103)
_ / h e”(tt')f(t’)(% / h eiv(t*”dv) dt’ (6.104)
-/ T ()5 ( — ) di (6.105)

1
— f(t). (6.106)

Example f(s) = ﬁ We need: > 2. Fort > 0 we drag the Bromwich contour to theft picking
up a pole contribution at = 2. The remaining integral vanishes in the limit~ —oc and so

6st

m, 2] = tezt s t>0. (6107)

f(t) = Res|
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6.11 Solution of initial value problems

Example A forcedunstableoscillator

§—3y+2y=4e*,  y(0) = =3, y0)=5
e LG8+ ) = LU () =
L(yt))(s) = L(yt)(s) —y(0) = 3(s)+3
L(j(t)) = s*L(y(t)(s) — sy(0) = 9(0)) = s*§(s) +3s =5,
e L( =35+ 2) = (s — 1)(s — 2)i(s) + 35 — 14 — S:

i(s) 7 . 4 + 4
= J(s) =—
Y s—1 s—2 (s—2)?

— y(t) = —Te' + 4e* + 4te*

It is quite impossible to solve this using the FT since thevaht FT’s don't exist.
Example A system

s—1 1 7(s) 1
i.e. = ,
5 (s+3) z(s) —2
y(s) 1 —(s+3) -1 1
— - @@
2 7
#(s) s“+25+72 5 (s—1) 2
e
s) = ————
Y s2+2s+2
— y(t) = e 'cost
i(s) 2s+3
s) = ————
Y s+ 2s+2
— 2(t) = e "(2cost+sint).

6.12 Linear Integral Equations and feedback loops

- /0 tK(t — )y(r)dr

Suppose we want to solve

(6.108)
(6.109)

(6.110)
(6.111)

(6.112)
(6.113)

(6.114)

(6.115)
(6.116)
(6.117)
(6.118)

(6.119)

(6.120)

(6.121)
(6.122)
(6.123)
(6.124)

(6.125)



Taking a Laplace transformation gives

N VN WA o f(s)
i) = Fo K@i, e )= ps (6.126)
Thus L L
y(t) = %/_ %}é‘zl)d& (6.127)
More generally one could consider the system
Dy(t) = f(t) —/O K(t—7)y(r)dr, (6.128)
whereD is some differential operator whose inverse hasi(F) . Then
1) VRN o Gls) ;
o) fs) = K(s)g(s), & )=y TR ) f(s). (6.129)
and thus » o
R R G OV IC)
y(t) = %/c_m e mdzs. (6.130)

In the language of systems theory one says that the outpuodife) from the integral operator with
kernel K(t — 1) is fed back and subtracted from the input. If the sign werensed, we would have
positive feed back.

The same problem can be tacked using the Fourier Transform.

Example The stability of Feedback: the Nyquist stability criterion
Using the FT, the feedback equation would be
. : AN
=) = f(w) = K(w)j(w) (6.131)
G(w)
SO .
IO} flw). (6.132)
1+ Gw)K(w)
The quantitylég‘i;)(w) is often referred to as theosed loop gairand G K as theopen loop gain
The principal of deedback amplifieis to choose’(w)K (w) >> 1 so that

y(w)

i(w) ~ flw) (6.133)

Now it is technically difficult to make?(w) large and independent of frequencyhowever is it techni-
cally easy to maké (w) small and independent af. This allows high amplificaton with a high degree
of fidelity.

If the system without feedback, i.e. whéf(w) = 0, is stable and>(w) never vanishes, then the
system with feedback will be stable if the open loop gain Hamim Response Curve given Bi(w) K (w)
is never zero and has zero winding number aljeut 0).
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6.13 Use of Laplace Transform to solve P.D.E.’s

Example The diffusion equation
Ou(z,t) 0*u(z,t)

815 = sz, .T>O,t20, (6134)
(i) u(z,0) = 0, (6.135)
(17) limz T oo wu(z,t) = 0, (6.136)
(ui1) u(0,t) = constant = ug . (6.137)
We take the LT with respect tiousing (i) and then (ii) to get
d*a
st(z,s) = % — 0= A(s)e V. (6.138)
Setz = 0 and use (iii) to get

A(s) = L(u), = d(z,s) = —2eVor (6.139)

S

1 c+100 U (— antst)
= u(z,t) = - ¢ ds (6.140)

We take,/s to be positive on the positive real axis and cut the planegatbe negative real axis. The
integrand thus has a branch cut along the negative real@dis singularity at the branch point and simple

pole at the origin. Fot > 0 deform the Bromwich contour to a Keyhole contour. The ctuition from
the pole isuy. The contributions from the cut are

1 e -
abovethecut wu(z,t) = 5 0 (—iav=stst) g (6.141)
i J, s
1 0 U :
below the cut = — —eltizv=stst) g (6.142)
21 ) _o S
(6.143)
Thus, settingi? = —s andv? = N
u(gjjt) = _@ elux—tzﬂ_u (6144)
T ) u
du(zx,t) o % iue—tu?
= —— et g 6.145
dx s _Ooe “ ( )
& T z2
_ _W et 5% qu (6.146)
™ —0o0
Ug 6_%
- _20 6.147
Vi i (6447
2 (i
= u(z,t) = —uoT / Ve dv + constant (6.148)
™ o
x
= u,(1— erf(—=) ), 6.149
u ( er (2\/7?)) ( )
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where

Definition  The error functiorerf(z) is

erf(x) = % /: e dv. (6.150)

So thaterf(0) = 0, erf(co) = 1.

Example The diffusion equation may also be solved by noting that

—b/4t
ﬁ(eﬁ ):\/ge—@, b>0, (6.151)

/oo bl o 1 /00 o+l g | T —Vab (6.152)
0 2 00 2a

which one can prove by substituting= u+/a — %

which follows from

Example Settingb = 22 one deduces that

Glo—',t) = \/%e() (6.153)

solves the diffusion equation feroo < z < 400, t > 0 such that
\;lcl\%o Gz —a't) = 0, (6.154)
lim G(zx—2,t) = d(x—2a). (6.155)

tl0
6.14 Solving the the wave equation using the Laplace Transim

Example The Green functioid”(x — x’, ¢t — ') satisfies

2 62G / /
—VIG+ S =0t = 1)o(x =), (6.156)

By translation invariance we set = 0 = ¢’. Take the Laplace transform with respect.t®@ne has

6(t) = H'(t) = L(6(t)) = sL(H(t)) = sé = L(6(t) =1. (6.157)
Thus ) )
~V2G(x, 8) + s°G(x, 5) = 0(x) . (6.158)
The solution which decays at infinity is
A 1 —sr o
G(x,s) =G(r,s) = U r=|x|. (6.159)



Thus ‘
1 c+100 1 B ( —t)
G(x,t) = —e "V ds (6.160)

omi 47y

—100

If r > ¢ we can move the Bromwich contour to the left and hence
G(r,t)=0. (6.161)

On the other hand, if < t we sets = ¢ + iv, ds = idv and recall thaf (x)d(x) = f(0)d(z), we find

1 [~
Glrt) = — i e~ r=t) gmelr=b) (6.162)
= %e_c(’"_t)d(r—t) (6.163)

mr

1
= — 6(r—1t). 6.164
10 —=1) ( )

Inverting the translation we find tHeetarded Green’s function

Gx—-x,t—t) = 0, t—t <|x—x| (6.165)
1

= — —t+t t—t —x'|x|. 6.166

il ), Sxoxx|. (6.166)
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